Please use this identifier to cite or link to this item: http://hdl.handle.net/10071/34676
Author(s): Neto, E. G. V.
Peixoto Jr., S. A.
Leithardt, V. R. Q.
Santana, J. F. P.
Anjos, J. C. S. dos.
Date: 2025
Title: Adding data quality to federated learning performance improvement
Journal title: IEEE Access
Volume: N/A
Reference: Neto, E. G. V., Peixoto Jr., S. A., Leithardt, V. R. Q., Santana, J. F. P., & Anjos, J. C. S. dos. (2025). Adding data quality to federated learning performance improvement. IEEE Access. https://doi.org/10.1109/ACCESS.2025.3578301
ISSN: 2169-3536
DOI (Digital Object Identifier): 10.1109/ACCESS.2025.3578301
Keywords: Data quality
Deep learning
Federated learning
IoT
IID
Non-IID
Abstract: Massive data generation from Internet of Things (IoT) devices increases the demand for efficient data analysis to extract meaningful insights. Federated Learning (FL) allows IoT devices to collaborate in AI training models while preserving data privacy. However, selecting high-quality data for training remains a critical challenge in FL environments with non-independent and identically distributed (non-iid) data. Poor-quality data introduces errors, delays convergence, and increases computational costs. This study develops a data quality analysis algorithm for FL and centralized environments to address these challenges. The proposed algorithm reduces computational costs, eliminates unnecessary data processing, and accelerates AI model convergence. The experiments used the MNIST, Fashion-MNIST, CIFAR-10, and CIFAR-100 datasets, and performance evaluation was based on main literature metrics like accuracy, recall, F1 score, and precision. Results show the best case execution time reductions of up to 56.49%, with an accuracy loss of around 0.50%.
Peerreviewed: yes
Access type: Open Access
Appears in Collections:ISTAR-RI - Artigos em revistas científicas internacionais com arbitragem científica

Files in This Item:
File SizeFormat 
article_111690.pdf7,8 MBAdobe PDFView/Open


FacebookTwitterDeliciousLinkedInDiggGoogle BookmarksMySpaceOrkut
Formato BibTex mendeley Endnote Logotipo do DeGóis Logotipo do Orcid 

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.