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ABSTRACT Massive data generation from Internet of Things (IoT) devices increases the demand for
efficient data analysis to extract meaningful insights. Federated Learning (FL) allows IoT devices to
collaborate in AI training models while preserving data privacy. However, selecting high-quality data for
training remains a critical challenge in FL environments with non-independent and identically distributed
(non-iid) data. Poor-quality data introduces errors, delays convergence, and increases computational costs.
This study develops a data quality analysis algorithm for FL and centralized environments to address these
challenges. The proposed algorithm reduces computational costs, eliminates unnecessary data processing,
and accelerates AI model convergence. The experiments used the MNIST, Fashion-MNIST, CIFAR-10,
and CIFAR-100 datasets, and performance evaluation was based on main literature metrics like accuracy,
recall, F1 score, and precision. Results show the best case execution time reductions of up to 56.49%,
with an accuracy loss of around 0.50%.

INDEX TERMS Data Quality, Deep Learning, Federated Learning, IoT, IID, non-IID.

I. INTRODUCTION
Advances in Artificial Intelligence (AI) and Internet of
Things (IoT) development significantly impact various sec-
tors, enabling intelligent data-driven applications. However,
this development brings challenges for data security and
mobility [1], especially in the health sector, where these
technologies play a key role in protecting patient privacy and
ensuring compliance with confidentiality regulations [2].

In scenarios where data protection is paramount, ap-
proaches to effective monitoring and management stand out,
ensuring regulatory compliance and the safety of patient
data [3], [4]. In this context, the ability to process large
amounts of data efficiently and collaboration between neural
networks are becoming essential for various applications [5],
[6].

From this perspective, Federated Learning (FL) emerges
as a promising approach, allowing IoT devices to collaborate
to create a neural network without sharing raw data. The
edge devices share their local model variables by updating a
global model, which updates the local devices until a global
minimum is reached [7].

Despite its promise, this approach introduces several
challenges, such as handling Independent and Identically
Distributed (iid) and Non-Independent and Identically Dis-
tributed (non-iid) datasets [8]–[10]. This approach includes
mitigating the high communication costs due to data disper-
sion and the complexity of selecting clients during model
training. These factors affect learning convergence and pro-
long execution time, resulting in a more computationally
intensive process on edge devices with hardware and energy

VOLUME 4, 2016 1

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2025.3578301

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

https://orcid.org/0000-0002-9881-199X
https://orcid.org/0000-0002-3864-2506
https://orcid.org/0000-0003-0446-9271
https://orcid.org/0000-0001-9461-7922
https://orcid.org/0000-0003-3623-2762


Valente Neto et al.: Adding Data Quality to Federated Learning Performance Improvement

limitations.
Furthermore, establishing incentives for collaboration and

managing device heterogeneity remain significant chal-
lenges [11], [12]. Consequently, addressing computational
demands requires automating cost management, increasing
resource availability [13], capturing temporal dependencies
[14], and ensuring data quality at the edge [15].

In this context, state-of-the-art studies have explored so-
lutions that underscore the significance of signal processing
[16], focusing on device heterogeneity and data privacy
protection. These approaches aim to optimize resource
efficiency and improve the training of FL models while
ensuring robust privacy support [11], [17].

Ultimately, these studies highlight key issues in managing
large data volumes, high communication costs, and the
complexity of data selection. Furthermore, the nature of
non-iid data adds a layer of complexity to the training
models.

Current FL approaches do not evaluate data quality at the
edge, leading to low-quality inputs and inefficient training.
Addressing this limitation, our model introduces an entropy-
based data selection method to optimize FL performance
with the following:

i. providing a data quality analysis algorithm on edge to
select data with the best information with class and
accuracy maintenance from the FL original models;

ii. reducing unnecessary data processing with low data
quality to save energy on the edge; and

iii. improving FL the computation performance by the
reducing execution time by 50% in IoT devices.

In general, at the top layer, the FL Model and Ag-
gregation Server orchestrate clients (nodes), detect rare
events, and ensure resistance to poisoning attacks or failures,
such as communication cost [18]. The responsibilities may
include techniques such as feature extraction [19], dynamic
regularization [20], node selection [21], client clustering
[22], client sampling [23], client contributions [24], and
adaptive selection [25], as well as layers of security, in-
creased fairness in collaboration between clients, and poi-
soning attack mitigation and defense mechanisms [26], [27].

For instance, upper-layer aspects — such as client
orchestration and connection problem management — are
commonly addressed in studies of global aggregation algo-
rithms at the aggregation server in FL approaches. Alterna-
tively, designers may integrate these aspects with broader
solutions (e.g., cryptography, blockchain, and connection
management)

In addition, the taxonomy in the Continuum of the Inter-
net of Things [28], [29] assigns these responsibilities to the
orchestrator, including how to manage connectivity, network
resources, resource management, network management, and
security across distributed edge, fog, and cloud layers. Some
responsibilities are shared between FL algorithms and the
orchestrator, especially in scenarios where coordination,
data availability, and system resilience are crucial for dis-
tributed training and aggregation processes.

This work proposes an agnostic algorithm (i.e., a new
AI layer as a data preparation step in the edge) without
interfering with the FL algorithm execution or the server
where aggregation occurs. The algorithm is based on edge
data quality evaluation, which removes data without relevant
information for training and improves the convergence of
training algorithms by selecting the most significant infor-
mation from the input data based on the entropy metric.

The algorithm operates at the edge and selects the best
aggregated information for processing in the edge devices.
This design choice ensures that the proposed approach does
not rely on or intervene with the functionalities of the FL
Model or Aggregation Server. As a result, the algorithm
can be integrated into different FL pipelines regardless of
the server’s adopted aggregation strategies or management.
Due to this, rare event detection, FL security, attacks that
compromise the integrity or reliability of the neural model
hosted on the aggregation server, and communication issues
are outside the scope of this work.

The remainder of this paper is structured as follows.
Section II provides an appropriate background and covers
Related Work. Section IV shows the proposed model in
detail. Section V presents the methodology and the evaluated
scenarios. Section VI presents the evaluations and the results
achieved. Section VIII presents the final considerations,
Section IX outlines future directions, and finally, Section
Appendix X contains more detailed information about the
state-of-the-art.

II. PRELIMINARIES AND BACKGROUND
This section discusses three concepts: 1) Iid data with
centralized learning, where independent and identically dis-
tributed data are collected centrally. 2) Non-iid data with FL
addresses decentralized data, reflecting uneven distribution
and non-independent data. 3) Entropy measures uncertainty
or disorder. Finally, it presents the Related Work and dis-
cusses the main problems.

A. IID AND NON-IID DATA
The iid data follows the same probability distribution by ob-
servations in which the samples share the same probabilistic
distribution, independent of their occurrence. For example,
we assume that the data come from a production line source,
which shows the same probability distribution. Therefore,
inferences can be made regarding these characteristics.

The iid property assumes that each observation is inde-
pendent of the others [30], meaning that one sample does
not influence another. Such an assumption allows statistical
tools, such as the law of large numbers and the central
limit theorem, to generalize the results. However, these
assumptions are often not satisfied in the real world. Data
are commonly correlated or exhibit sample heterogeneity
[31].

These conditions violate the iid data assumptions, where
the observations do not follow the same probabilistic dis-
tribution, and the observations may be very close to each
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other or strongly correlated rather than having more dis-
tant relationships. Furthermore, dynamic environments may
make the iid assumption unrealistic.

The distributions change over time, leading to an effect
known as concept drift, which represents a shift or evolution
in the data that invalidates the created AI model. Figure 1
presents a visual representation of these concepts.

FIGURE 1: The iid and non-iid data.

Moreover, non-iid data violate at least one of the condi-
tions that define iid data; each observation or sample must
be independent of the others, and all samples originate from
the same probabilistic distribution.

In other words, non-iid data involve correlated distribu-
tions, where samples may influence one another, and prob-
abilistic distributions may vary among data. Additionally,
non-iid datasets may present different subsets of data that
follow different distributions.

B. CENTRALIZED LEARNING AND FEDERATED
LEARNING
In centralized Machine Learning (ML), data originates and
is stored, analyzed, and processed on a dedicated server
or in a centralized location. This architecture promotes
efficiency in statistical modeling and pattern detection. This
model facilitates the application of ML algorithms that
require large amounts of data to generalize well and achieve
accurate predictive results.

However, centralized models present challenges, mainly
related to data security and collecting and centralizing
large volumes of data. Therefore, this exposes sensitive
information to risks such as data leakage or cyberattacks
[32]. Centralization also leads to issues related to latency,
where data from different sources is centralized on a server,
consuming a significant amount of communication, espe-
cially with geographically distributed data [33].

Unlike the centralized approach, FL follows a decentral-
ized strategy for training ML models. Data from different
sources contribute to training multiple devices or nodes
in a network (clients), such as smartphones, tablets, IoT
sensors, and other edge-computing devices. Each device

uses its data to train an AI model and then sends model
parameter updates to a central server that aggregates the
updates from the parameters of the neural network. In this
approach, private data remain on edge devices, never shared
directly, respecting ethical and legal perspectives in contexts
where data are sensitive. Furthermore, it reduces massive
data transfers and the risk of large-scale data leaks [34].

Figure 2 compares ML architectures. In Figure 2. (1),
the data from multiple devices are centralized and stored
for model training. In contrast, Figure 2. (2) depicts de-
centralized training, where the data remains on the devices,
and the model trains locally. A global aggregation algorithm
combines updates from the neural networks of each device.

FIGURE 2: Centralized vs Decentralized Learning FL.

C. ENTROPY
Entropy is a central concept in information theory. It plays a
fundamental role in understanding efficient communication
and information transmission and providing a quantitative
means of measuring uncertainty. Consider, for example, a
simple system composed of coin flips. In such a system,
both faces have an equal probability of occurrence. The
entropy, denoted by H(X), where X is a random variable
that represents the result of each coin flip, can be calculated
using the entropy formula. This calculation allows us to
quantify the uncertainty of the information produced by the
flips.

H(X) = −
n∑

i=1

p(xi) log2 p(xi) (1)

Where:
i. X represents the set of all possible symbol values.

ii. p(xi) is the probability of occurrence of the i-th symbol
value.

iii. The
∑n

i=1 all possible values.
iv. log2 p(xi) is the logarithm with the base b of probabil-

ity p(xi), making the entropy unit in bits.
In this case, there are heads and tails, where the entropy

H(X) represents a value of 1; thus, each coin provides
one bit of information. However, with such a result, it is
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impossible to precisely determine the outcome because each
flip has the same degree of uncertainty.

However, if entropy is reduced, each new flip will be
less surprising as outcomes become increasingly predictable.
Conversely, uncertainty and unpredictability rise at maxi-
mum entropy, making system outcomes completely random.

Figure 3 presents the concepts discussed concerning en-
tropy, highlighting its applicability as a metric for quantify-
ing the uncertainty or the degree of unpredictability of an
information source. It measures disorders and impurities in
datasets, helping select relevant data features.

FIGURE 3: The figure illustrates entropy reduction through
symbolic states: high, intermediate, and low entropy, repre-
senting decreasing uncertainty.

Additionally, entropy serves as a tool for analyzing how
noisy or incomplete the data are, which, in turn, hinders
the identification of patterns and negatively affects the
convergence of ML models.

Furthermore, entropy contributes significantly to in ML,
particularly in decision tree classification algorithms, where
it measures the degree of disorder and impurity in the dataset
to minimize the uncertainty regarding the classes in each
split. The information gain criterion, derived from entropy,
is employed to select the best data features, aiming for more
accurate classification [35]. About data quality, entropy is
also used in ML; noisy or incomplete data tend to increase
a system’s entropy, making it more difficult to identify clear
patterns and reducing the efficiency of AI models [36].

III. RELATED WORK
Recent advances in FL have caused significant changes
in communication efficiency, precision, and convergence
optimization, particularly when dealing with the challenges
imposed by non-iid and heterogeneous environments. These
issues are summarized in Table 1, which presents the FL ap-
proaches related to this study and their main characteristics.

For instance, "FedAVO," a method inspired by natural op-
timization strategies to improve communication efficiency in
FL, reflects an interest in solutions inspired by nature [37].
Likewise, "Fedco," which utilizes grouping optimization to
increase communication efficiency, has been suggested to
manage and effectively reduce data communication overload

[38]. Orlandi et al. [39] presented the FedAvg-BE algorithm,
which reduces the runtime in non-iid data in FL by up to
22% for MNIST and 26% for CIFAR-10 using edge entropy
evaluation.

These advancements focus on improving communication
efficiency, accuracy, and convergence in FL environments
using non-iid data. Despite these advances, computational
cost, communication, optimization, and data handling chal-
lenges in FL architectures remain crucial.

Some algorithms improve learning efficiency and preci-
sion, such as Yu et al. [20], which automatically adjusts
weights for the best performance. Preconditioned FL was
also introduced in this context, proposing a method to
precondition learning environments or data to improve FL
performance [40].

A subsequent study introduces "FedWNS," which utilizes
the selection of nodes based on data distribution through
learning by reinforcement, highlighting a node selection
strategy to obtain better results [21]. In another approach,
Wolfrath et al. considered heterogeneity and focused on
selecting grouped clients, accelerating the FL process to
address the challenges of client heterogeneity during the
learning process.

In the Li et al. [41] approach, clients send their models
to the server and share the distribution of their training
data, enriching the server with additional information and
global optimization. However, this last approach violates the
sensitive data strategy of the FL.

Other approaches have introduced the FL architecture
based on blockchain technology. It leverages a data and
model provenance ledger built on intelligent contracts and a
fair and weighted data sampling algorithm [42]. Similarly,
incentive mechanisms have developed to encourage node
participation thoughtfully, increase participation, and ensure
collaboration more fairly [43].

Yang et al. [44] proposed an aggregating strategy that
improves the model’s convergence speed in non-iid environ-
ments by accounting for server-side characteristics with high
variation. Similarly, Dolaat et al. [45], and Xu et al. [46]
introduced strategies to enhance precision and personalize
global FL models to address non-iid challenges. These
approaches emphasize incentive mechanisms, aggregation
techniques, and balancing strategies in FL environments.

Ma et al. [12] explored the efficacy problem of AI model
training in distributed scenarios, especially the solution to
non-iid data in FL, and the relevance of efficient data
selection methods. Parallel to this, other authors approach
methodologies to improve convergence and broach data
heterogeneity through local model training adjustments and
"hyper-knowledge" sharing [19], [47].

Researchers have introduced mechanisms to adjust gra-
dients, optimize learning in environments with data hetero-
geneity, and optimize global structures, approaching critical
challenges in the search for an efficient FL [23], [48]. These
studies demonstrate the impact of data heterogeneity and
how adjustments in local models, particularly at the edge,
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remain one of the literature’s most promising and central
focuses.

The FL convergence improvement through regularization
was recently proposed by Qiao et al. [49] to address the
data heterogeneity between clients directly. Additionally,
the FedGroup Framework incorporates a client clustering
strategy using the K-means++ algorithm and optimization
techniques, including meta-learning, adaptive optimization,
and gradient aggregation strategies [50]. Another study by
Ilic et al. [51] simultaneously examined several clients
updating a global model.

The experiments involved aggregated updates using a
method known as federated averaging. Incremental updates,
in which the global model undergoes sequential updates,
are also considered. This study also includes cyclic up-
dates, where minor updates occur per epoch, and semi-
simultaneous updates, combining simultaneous and incre-
mental strategies. Moreover, these studies highlight the
importance of advanced strategies at nodes (clients), where
these techniques significantly affect global models’ learning
processes and updates.

Noise in the data under non-iid scenarios poses an ad-
ditional challenge for global FL models. In this context,
[58] proposed "FEDCNIA," which is an approach aimed at
mitigating the impact of noise on FL clients. Furthermore,
the discrimination in data distribution in FL [59] is explored
using techniques to handle the non-iid nature of data in the
healthcare and finance sectors. Regarding client data hetero-
geneity, [24] proposed an adaptive mechanism inspired by
the Shapley value to promote greater client fairness. Client
consistency is a critical factor affecting aggregation models
[22].

Thus, the FEDLAW algorithm demonstrates how data
heterogeneity, the number of local epochs, and variability
among clients influence the global model [62]. However,
noise and data heterogeneity remain critical challenges in
global aggregation techniques. The proposed model aims
to mitigate quality loss and address data discrimination to
ensure fairness among clients and quality during training.

Finally, several studies in the medical field have explored
the application of FL, emphasizing different aspects and
challenges. For example, Antunes et al. [63] highlighted
open questions regarding adoption and data aggregation
mechanisms in Electronic Health Records (EHR). In med-
ical imaging, the use of FL focuses on privacy concerns
regarding brain tumors [45]. Furthermore, technical chal-
lenges of FL, such as non-iid data, were discussed in [50]
using heart rate data.

Additionally, [11] addresses issues related to compli-
cations in data transfer in the healthcare field and other
medical data and applications. Furthermore, several studies
have highlighted the applications of FL, emphasizing its
importance in data privacy, sensitivity, and global aggre-
gation models. These issues in the medical field address the
technical challenges related to the heterogeneity of health
data and the area of medical imaging.

A. PROBLEM OVERVIEW
In this section, we explore the main topics of the problems
addressed in this work and the state-of-the-art literature,
focusing on challenges related to data quality in FL, par-
ticularly in non-iid scenarios.

The exponential growth of IoT devices and the massive
volume of generated data pose significant challenges for
practical analysis and the extraction of meaningful insights
while addressing critical issues such as privacy protection,
statistical heterogeneity, optimization and performance, and
communication efficiency, all while preserving privacy and
accuracy [64], [65].

These are especially critical scenarios where devices
face battery limitations, communication costs, latency, and
synchronization issues.

In the context of FL, data exhibits complex charac-
teristics, such as non-iid properties, necessitating efficient
algorithms and architectures capable of securely processing
large data volumes, respecting privacy, and enhancing per-
formance.

Thus, the central problem addressed in this work is data
quality, mitigating unnecessary processing by eliminating
redundant information that does not add value to the neural
network or contribute significantly to model accuracy.

The goal is to address device-related issues and reduce
energy costs. This approach allows AI systems to train more
rapidly while consuming fewer computational resources.

This work tackles these challenges by proposing an al-
gorithm to improve data quality in the FL context, focusing
on identifying information that efficiently contributes to
the neural network and reducing the computational cost of
training.

B. DISCUSSION OF PROBLEMS
The FL model inherently exhibits high latency, causing
delays in convergence, reduced update frequency, synchro-
nization issues, impact on accuracy, and increased energy
consumption. Furthermore, one of the current limitations
of the federated environment is the selection of nodes that
frequently leave the system and are replaced by new nodes
that incrementally introduce information.

In this context, the input ignores the quality of the se-
lected data, focusing instead on the processing capacity and
availability of the nodes (clients). The data that contribute
minimal incremental value to the model result in conse-
quences at the edge processing level. As a result, such data
is underutilized and fails to produce a significant update in
the local model weights, leading to unnecessary computation
at the edge, excessive communication requirements, and
increased energy consumption.

Since none of these new node sets are specifically vali-
dated, they allow for input data of varying quality, which can
potentially increase latency and make it difficult to achieve
high accuracy and low loss.

By contrast, the proposed model (e.g., Entropy-Based
Selection (EnBaSe)) prioritizes both the nodes’ quality and
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TABLE 1: Overview of Federated Learning Studies by System Characteristics and Optimization Techniques.
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Li, Beibei et al. [52] 2020 x x x
Kang, Jiawen et al. [16] 2020 x
Du, Zhaoyang et al. [53] 2020 x x x x
Itahara, Sohei, et al. [18] 2021 x x x x x x
Criado, Marcos F. et al. [10] 2022 x x x
Gafni, Tomer et al. [54] 2022 x x x x x
Al-Saedi, Ahmed A et al. [38] 2022 x x x x x x
Yu, Xi et al. [20] 2022 x x x x
Ullah, Shan et al. [47] 2022 x x x x
Xu, Jian et al. [46] 2022 x x x x
Wolfrath, Joel et al. [55] 2022 x x x x x x x
Li, Yang, et al. [56] 2022 x x x
Zhang, Yu, et al. [35] 2023 x x x x
Condori Bustincio, et al. [25] 2023 x x x x x
Orlandi, Fernanda C. et al. [39] 2023 x x x x x x x x
Lo, Sin Kit et al. [42] 2023 x x x x x x x
Hossain, Md Zarif et al. [37] 2023 x x x x x
Tao, Zeyi et al. [40] 2023 x x x x x x
Lee, Hyeongok et al. [57] 2023 x x x
Tu, Chengwu et al. [21] 2023 x x x x x x x
Li, Boyuan et al. [41] 2023 x x x x x x
Yang, Wei-Jong et al. [44] 2023 x x
Chen, Huancheng et al. [19] 2023 x x x x x
Zheng, Shu et al. [23] 2023 x x x
Huang, Chenxi et al. [48] 2023 x x x x
Dolaat, Khalid Mahmoud Mohammad et al. [45] 2023 x x x x x x
Qiao, Yu et al. [49] 2023 x x x x x
Sabah, Fahad et al. [50] 2023 x x x x x
Li, Zexi et al. [22] 2023 x x x x x x
Wu, Chenrui et al. [58] 2023 x x x
Sun, Qiheng et al. [24] 2023 x x x x
Iyer, Venkataraman Natarajan et al. [59] 2024 x x x
Milan Ilić et al. [51] 2024 x x x x
Yan, Litao, et al. [60] 2024 x x x x x
Hamidi, Shayan Mohajer, et al. [61] 2024 x x x x x x x
Our Model 2024 x x x x x x x x x x x

processing capacity. Thus, the EnBaSe entropy algorithm
excludes information that does not significantly contribute
to the model or might have a limited contribution, selecting
data with the most relevant information.

Proper validation of the data’s quality can increase its
homogeneity. For example, suppose the average entropy of
a data set is reduced from 4.8 to 4.6215, representing a
decrease of 0.1785. This reduction means less uncertainty
and unpredictability in the system, messages, or processed
data.

When reduced, entropy, which measures global uncer-
tainty, implies greater predictability and uniformity. There-
fore, this results in images and data with a high standard of
consistency, simplifying the models and eliminating incon-

sistent samples from the system. Removing these sample
inconsistencies speeds up the convergence of the neural
network, allowing the model to be trained more quickly and
efficiently. Consequently, this reduces energy consumption
and processing, optimizing the system’s performance.

For clarity, the MNIST dataset, comprised of 60,000
images in the iid scenario, has a total of 4.8 bits of entropy.
Reducing entropy by removing 30,000 images equates to an
increase in accuracy from 98.95% to 99.27%, as shown in
Table 9, increasing the system’s predictability and reducing
the computing cost of processing 30,000 images that added
no value to the neural network.

For the non-iid scenario, following the same pattern of
data removal, this results in a loss of accuracy from 81.73%
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to 81.26%, as shown in Table 12. Consequently, the removed
images add zero or negligible value (0.47%) to the neural
network’s accuracy, wasting processing time and energy.

IV. PROPOSED MODEL
This study tests the hypothesis that it is possible to use
information theory to quantify and analyze the quality of
information in a dataset, as well as the uncertainty or
surprise associated with its data distribution. Additionally,
improving the quality of the input data and minimizing data
noise were evaluated to reduce the computation time and
energy costs.

In line with this perspective, the current state-of-the-art
research explores the application of Entropy to quantify the
degree of uncertainty and assess the redundancy present
in information. These studies aim to comprehensively ana-
lyze information systems to measure the informational gain
achieved through data processing.

In this context, Entropy is a tool for identifying data por-
tions that effectively contribute new information to a system.
Analyzing redundancy enables a more detailed evaluation of
distortions, data quality, and information reliability.

This approach reduces unpredictability, offers a robust
framework for quantifying information with low bias, and
becomes a metric of information gain [56], [66]. Based on
these principles, Entropy is approached as a control mech-
anism in deep neural networks to address the heterogeneity
of data and clients [39], [61].

Furthermore, it is argued that Entropy is a suitable metric
to assess the degree of disorder in a system (e.g., dataset)
[67]. As a measure of disorder, capturing this fundamental
characteristic of the system is considered a suitable ap-
proach. Entropy helps identify and quantify heterogeneity
between clients’ data, allowing for adaptive adjustments to
achieve better convergence of the global model.

In addition, Entropy is also used to identify subsets of
relevant and representative data. By serving as a metric
to assess the relevance or diversity of data, it ensures
that clients have meaningful and relevant information [25].
Additionally, some studies argue that Entropy reduces com-
munication overload, as only relevant clients send updates,
decreasing the required communication [18], [39], [60].

A. HYPOTHESIS
The hypothesis is that when Entropy applies to the field of
Computer Vision (CV), each set of pixels begins to represent
the color or intensity values of a specific color or intensity.
Therefore, the probability of each color or intensity value
and each unique pixel occurrence can be calculated based on
the number of times each specific color or intensity appears
in the image.

Thus, high Entropy represents a great diversity of pixels,
indicating a high complexity in texture, significant variation,
and little predictability of the information. On the other
hand, low Entropy indicates greater image homogeneity,
that is, better uniformity in identifying regions with little

or no relevant information, facilitating the segmentation of
elements in a scene.

Finally, the assumption is that the available data adds little
value to the model and introduces noise into the training
process. The following analogy illustrates this idea: initially,
a disorganized set of images presents high Entropy and
great uncertainty. By organizing and separating these sets of
images, they can be divided into segments with low Entropy,
making them highly predictable.

In contrast, the other part exhibits high Entropy and
continuous unpredictability. Consequently, data with high
Entropy tends to be viewed as low-quality or noisy and is
thus excluded from the training process to enhance model
performance.

B. REFERENCE MODEL AND OPERATION SCHEME

Figure 5 presents a model of the algorithm with separate
steps. Initially, Entropy is computed for each 2D image
class, represented by matrices, forming key-value pairs,
where the key is the number of images, and the value is
the linked Entropy. Subsequently, these entropy values were
organized sequentially in each class and divided based on a
probabilistic distribution, utilizing the median as a criterion,
resulting in selected classes.

Finally, the process sends the data to the neural network
for training. It selects values below the median of each class
and stores them as representatives. This step applies to all
classes in the dataset.

Figure 4 illustrates the interaction between the model
proposed in this section and scenarios with iid and non-iid
data. Specifically, Figures 4 (1) and (2) demonstrate the
centralized scenario where, in (1), data from centralized
devices are used for training an AI model, and in (2),
global parameters are sent by the devices for aggregation
into a global model. Figure 4 (3) shows an intermediate
layer that facilitates processing, aggregation, orchestration,
device management, and security. Finally, Figure 4 (4)
represents the dataset from different IoT devices that have
been centralized or will be used in decentralized learning.

FIGURE 4: EnBaSe model applied to iid and non-iid
scenarios.
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FIGURE 5: Algorithm Model: EnBaSe (Entropy-Based Se-
lection).

C. ALGORITHM DETAILS
As understood in state-of-the-art studies in Information
Theory, Entropy is a mathematical and statistical tool used
to measure the degree of disorder and information gain in a
system. Reducing the Entropy within an information system
increases the predictability of outcomes. In this context, the
proposed algorithm maps each system by selecting the most
significant data within each subset.

Building on this concept, creating a data subset with
reduced redundancy and noise is possible, which ensures
a higher quality of the data subset. Consequently, neural
networks can be trained more efficiently and at lower
computational costs.

The Algorithm 1 is designed to be implemented in em-
bedded systems, whether centralized servers or IoT devices.
Specifically, among these devices is the most representative
dataset from each data subset, using Entropy to identify the
most informative and representative data.

As illustrated in Figure 5, the proposed model interacts
with both the centralized and decentralized environments,
as shown in Figure 4. Thus, the EnBaSe algorithm balances
the selection of each dataset, selecting half of the dataset
with the lowest Entropy for each class, aiming to create a
homogeneous sample of each class and balance both the
centralized and decentralized scenarios to reduce computa-
tional, energy, and time costs.

The algorithm is embedded and receives training sets
and labels, represented by Initialization, which occurs by
creating two sets for data storage: X selected and Yselected.
The algorithm iterates over each class from 0 to K-1,
calculating the Entropy and measuring the degree of disorder
for each image in each class. Finally, it selects the data
below the median and returns the selected data in X selected
and Yselected, which serve as input for training. Algorithm
1 is as follows:

Algorithm 1 EnBaSe. Where K denotes the total number
of classes.
Require: Xtrain, Ytrain, K
Ensure: Selected classes based on Entropy

1: Xselected ← ∅
2: Yselected ← ∅
3: for label← 0 to K − 1 do
4: C ← Retrieve indices belonging to class label
5: MEntropy ← ∅
6: for each sample ∈ C do
7: MEntropy ← (key,ComputeEntropy(image))
8: Sort MEntropy by ComputeEntropy(image)
9: Calculate the median of MEntropy

10: IQualified ← ∅
11: for each key ∈MEntropy do
12: if key.entropy ≤ median then
13: Append key.index to IQualified

14: for i in IQualified do
15: Append Xtrain[i] to Xselected
16: Append Ytrain[i] to Yselected

17: return Xselected, Yselected
18: function COMPUTEENTROPY(image)
19: H ← −

∑
d p(image) log2(p(image))

20: return H

where

i. K: Represents the total number of classes in the
dataset.

ii. Xtrain: Training Dataset.
iii. Ytrain: Labels corresponding to the training set Xtrain.
iv. Xselected: Subset Xtrain selected by the algorithm based

on entropy.
v. Yselected: Labels corresponding to subset Xselected.

vi. label: A class label (K−1, where K is the total number
of classes).

vii. C: Set of indices belonging to a given class label.
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viii. MEntropy: An array that stores pairs (index, entropy
value) for each image in a given class.

ix. ComputeEntropy(image): A function that calculates
the entropy of an image.

x. Median: Median entropy values in the set MEntropy.
xi. IQualified: Set of indices of samples with Entropy less

than or equal to the median, Xselected and Yselected.
xii. H: Entropy calculated for the image.

xiii. p(image): Probability distribution associated with the
image (used in entropy calculations).

Algorithm 1 operates through several stages, detailed as
follows:

i. Initialization: Two empty sets (Xselected and Yselected),
are created to store the selected data and their corre-
sponding classes.

ii. Iteration over classes: The algorithm iterates through
each class present in the training set (Xtrain and Ytrain),
identifying the indices associated with each class.

iii. Entropy computation: For each element in the cur-
rent class, the ComputeEntropy function calculates
the Entropy of the sample based on the probability
distribution of its attributes. The results appear as
(index,ComputeEntropy) pairs in MEntropy, which is
also referred to as the entropy map.

iv. Sorting and median-based selection: The MEntropy
pairs are sorted by Entropy, and the median entropy
value is calculated. Only elements with entropy values
less than or equal to the median are selected, ensur-
ing the inclusion of the most representative and least
redundant data.

v. Updating the selected subsets: The selected indices
are used to copy the corresponding data from Xtrain and
Ytrain to the subsets Xselected and Yselected.

vi. Final output: At the end of the Iteration over all
classes, the subsets Xselected and Yselected contain the
most informative and homogeneous data, optimized for
model training.

In summary, the algorithm proposed in this study, Algo-
rithm 1, leverages Entropy as a metric to identify relevant
data subsets for each class, aiming to reduce redundancy and
noise while enhancing the quality of the selected data. The
choice of lower Entropy is grounded in Information Theory,
which asserts that systems with lower Entropy exhibit
greater predictability. Beyond its data selection strategy,
the EnBaSe is designed to operate independently, ensuring
broad applicability across different FL methods.

This design choice means that EnBaSe operates inde-
pendently of an embedded design. The approach remains
decoupled from any specific FL algorithm. Due to this, our
algorithm is general-purpose and compatible with any global
aggregation method.

This versatility is particularly beneficial in scenarios
where computational resources are limited. Thus, the data
subsets are structured homogeneously to optimize the train-
ing process. For instance, in medical classification systems

with computational power constraints, Algorithm 1 priori-
tizes more informative and less redundant features, reducing
the computational effort required by the neural network.
This approach enables rapid and highly accurate responses
in real-time IoT systems.

D. MATHEMATICAL FORMULATION OF ENBASE
The model described at the beginning of Subsection IV-B,
based on Hypothesis IV-A, builds on the principles of
Information Theory to extract data with higher informative
quality II-C. In particular, it applies Shannon entropy to
quantify the degree of disorder in each image, allowing the
identification of low-entropy samples that best represent the
neural network domain. The following formulations define
the mathematical base of pseudocode in the Subsection
IV-C.

Let the amostral space I represent a matrix of pixel values
from an image, and p(xi) be its probability distribution of
pixel values xi in the image. Then, the Shannon entropy
H(I) is defined as:

H(I) = −
d∑

i=1

p(xi) log2 p(xi) (2)

Entropy H(I) quantifies the degree of uncertainty in
new data: the more uncertain it is, the more associated
information there is. Which is calculated using the loga-
rithm log2 and measured in bits. Thus, p(xi) represents the
frequency of occurrence of the pixel value xi. A Low H(I)
value indicates a low degree of uncertainty in the image.
Therefore, a low entropy value implies high predictability,
which benefits neural network training when specializing in
a specific subset of data. This approach allows the neural
network to learn more efficiently with fewer input data.

Thus, given a class c ∈ {1, . . . ,K} with a sample set
Ic = {Ic1

, Ic2
, . . . , Icn

}, the sorted set of image entropies is
defined as:

Hc =
{
H(Icj

)
∣∣ j = 1, . . . , n

}
(3)

The selected subset Sc from the class c is defined based
on the median Entropy from H(Icj

) set, and consists of the
image collections whose Entropy is less than or equal to
Hc:

Sc = {Icj
∈ Ic | H(Icj

) ≤ Hc} (4)

The data selected for training the neural network is
represented by the union of selected subsets for all classes
of Sc.

S =

K⋃
c=1

Sc (5)

EnBaSe selects samples based on Entropy that is lower
than or equal to the median value of Hc for each class
c, thereby constructing a more informative subset Sc. The
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final training set S is obtained as S =
⋃K

c=1 Sc, combining
all subsets across the K classes. The higher predictability
and lower noise of the data reduce the vanishing gradient
problem and enable the model to learn more effectively
with the data. As a result, the selected subset (S) indirectly
reduces computational costs and accelerates the convergence
of the neural network models.

V. EXPERIMENTAL EVALUATION
This section provides a comprehensive outlook on the
methodological approaches adopted during the execution of
this experiment, encompassing the steps taken, enabling the
replication of the experiment by other interested researchers,
and facilitating a critical and detailed evaluation of the
results obtained. Source codes are available in Github1 for
reproducibility.

A. DATASET DESCRIPTION
The MNIST, Fashion MNIST, CIFAR-10, and CIFAR-100
datasets are fundamental for the training and evaluating ML
and CV. The scope of the experiment encompassed the same
datasets as the iid and non-iid scenarios. The characteristics
of the selected datasets are detailed as follows:

i. MNIST: images in a grayscale of handwritten digits
(0-9), divided into training and test sets. The goal was
to develop models for recognizing and classifying these
digits.

ii. Fashion MNIST: Alternative to MNIST contains im-
ages of fashion articles in ten categories, such as shirts
and pants, in grayscale. These images pose a challenge
for accurate classification.

iii. CIFAR-10: Presents colored images in ten different
classes, including cars and animals, with training and
test sets utilized for benchmarking in image recogni-
tion.

iv. CIFAR-100: Similar to CIFAR-10, but with 100
classes for more significant granularity, ranging from
people to natural elements, representing a challenge
amplified by the increased number of classes.

The experiments evolved from MNIST, Fashion-MNIST,
and CIFAR-10 to CIFAR-100 to validate the performance
of FL methods in distributed and heterogeneous CV envi-
ronments with EnBase Algorithm at the edge. Since mod-
ern edge devices handle high-dimensional visual data with
significant class variation and complexity, for instance, the
CIFAR-100 dataset realistically captures this environment
in a standard dataset that enables the reproducibility of our
experiments.

On the other hand, validating our results by researchers is
difficult without standard datasets due to the impossibility
of reproducibility from the heterogeneous input data source.
To mitigate this limitation, the datasets were selected for
the experiment based on the state-of-the-art review in
Table 14, which presents the main continuous and discrete

1https://github.com/ernesto-arq/Entropy-Artificial-Intelligence.git

datasets used in the literature, as well as studies that exhibit
a unimodal nature concerning the edge computing and CV
challenges addressed in this experiment. This table outlines
FL algorithms, aggregation approaches, application scenar-
ios, metrics used, advantages, disadvantages, and the most
recurrent datasets in the CV area applied to experiments in
FL.

Recognizing that, compared to the real world, the results
have inherent limitations, we adopt strategies suggested
in the literature to simulate more realistic scenarios. In
this context, the heterogeneity and distributional properties
of the data are considered, as presented in Subsection V-C
and according to [68], [69].

Therefore, we conclude that, in this methodology, the
experiment strategy is based on state-of-the-art recurrent
datasets (e.g., for FL in edge applications in the CV area),
as well as on the distributions of the datasets identified
in the literature.

B. IID EXPERIMENT CONFIGURATION
To address the different challenges related to image pro-
cessing and pattern recognition in an iid setting, we chose
four different databases to validate the method developed in
this experiment. Table 2 lists the MNIST, Fashion-MNIST,
CIFAR-10, and CIFAR-100 datasets used.

TABLE 2: Datasets Summary.

Dataset Description Format Training/Test
MNIST Hand-written Digits 28x28 60,000/10,000

Fashion-MNIST Clothes 28x28 60,000/10,000
CIFAR-10 Assorted 32x32 50,000/10,000

CIFAR-100 100 Classes 32x32 50,000/10,000

We aim to utilize these datasets to address a range of
benchmarks and challenges in CV, for MNIST and Fashion-
MNIST, 20% of the data was designated for validation,
whereas 10% was allocated for CIFAR-10 and CIFAR-100.

C. NON-IID EXPERIMENT CONFIGURATION
1) Data Distribution
For the creation of the non-iid scenario in federated learning,
where the data is not independent and identically distributed,
the model is based on feature distribution skew, label
distribution skew, and quantity skew [68]; these types of
skewed distributions imply characteristics of heterogeneous
data [69].

The non-iid indices for the clients (nodes) are used as a
quantitative metric of the degree of data distribution among
the clients (nodes), focusing on the feature distribution,
label distribution skew, and quantity skew. The key
considerations are as follows:

i. Distortion in Feature Distribution: Feature distortion
refers to the imbalance between different quantities
of labels across various clients concerning a specific
client, which significantly affects performance and
training. This feature distortion results in each client
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(node) having different features that may correspond to
the same label, which can contain different information.
For instance, the same character can be written in
various styles, such as stroke width or inclination
variations, leading to heterogeneous representations of
the same labels.

ii. Distortion in Label Distribution: Label distortion
occurs when different clients (nodes) in distinct loca-
tions exhibit varied distributions owing to demographic
differences. These variations result from demographic
and contextual factors that affect each client’s label
occurrence frequency (node).

iii. Quantity Distortion: Quantity distortion refers to an
imbalance in the number of specific labels within a
client, which affects the amount of data available for
a single client (node). This imbalance significantly
fragments the training process and model performance,
creating an under-representation or over-representation
of specific labels, thereby affecting the balance of the
model.

Initially, nodes are formed using random datasets based
on available data, where sufficient or available data from
specific classes are not guaranteed. This random distribu-
tion introduces heterogeneity across nodes because different
nodes may receive varying amounts of data or data types.

The goal is to ensure that any variation between groups
(nodes) results from a random rather than a systematic
factor, thereby reflecting the inherent variability in IoT
environments. Allowing different nodes to contribute un-
evenly captures a more realistic representation of the diverse
data encountered in real-world IoT devices, enhancing the
model’s ability to generalize across heterogeneous condi-
tions.

2) Aggregation Algorithm
Aggregation approaches are widely recognized in the liter-
ature and are well established within the field of federated
learning and have been selected. This selection aimed to
validate the hypothesis concerning entropy’s capacity as a
quantitative measure for evaluating data quality in a fed-
erated environment, thereby reducing latency, noise, com-
putational cost, and energy consumption. This experiment
employed the following global aggregation models:

• FedAvg: calculates the weighted average of each client
update. In this calculation, the weights typically corre-
spond to the volume of data each client possesses, thus
adjusting for any imbalances in the dataset.

• FedProx: FedProx introduces a new approach to the
local loss function by adding a proximal regularization
term. This term penalizes significant adjustments in
the local model weights that deviate significantly from
the global model weights. Thus, FedProx seeks to
minimize the impact of data and device heterogeneity,
promoting more harmonious learning.

D. DEEP NEURAL NETWORKS
Experiments with iid: We analyzed the MNIST and
Fashion-MNIST datasets without Transfer Learning (TL)
or Data Augmentation (DA) using the Stochastic Gradient
Descent (SGD) optimizer. MNIST had 32 batches, and
Fashion-MNIST had 128 batches, both for ten epochs. In
CIFAR-10, we applied DA and used the Adam optimizer
with 128 batches for 50 epochs. For CIFAR-100, we com-
bined DA and TL with SGD, trained for 50 epochs in
batches of 128, and added a callback to improve training
control.

To enhance the stability and performance of Deep Learn-
ing (DL) algorithms in centralized scenarios with homoge-
neous data, dataset pixel values were normalized to a 0–1
scale by dividing them by 255.

The model configurations are listed in Table 3. For a fair
comparison of the performance of the proposed algorithm,
the same architectures were used with the complete dataset,
thus allowing an assessment of its performance and limita-
tions when trained with all the data.

TABLE 3: Model Configurations iid.

MNIST Fashion CIFAR-10 CIFAR-100
CONV-1 CONV-1 CONV-1 ResNet50

MP MP BN LAYER-1
CONV-2 DP-1 CONV-2 LAYER-2

DP-1 FC-128 BN LAYER-3
BN DP-2 MP LAYER-4
MP FC-10 DP-1 GAP

CONV-3 SOFTMAX CONV-3 FL-512
BN BN BN

FC-128 CONV-4 DP-2
FC-10 BN FL-100

SOFTMAX MP SOFTMAX
DP-2

CONV-5
BN

CONV-6
BN

DP-3
FL-512

BN
DP-4
FL-10

SOFTMAX

Note: BN: batch normalization; MP: max pooling; DP: dropout; FC: fully-
connected layer; GAP: global average pooling. Layer 1: three blocks (Conv,
BN, ReLU, MP); Layer 2: four blocks (Conv, BN, ReLU, MP); Layer 3: six
blocks (Conv, BN, ReLU, MP); Layer 4: three blocks (Conv, BN, ReLU,
MP).

Experiments with non-iid: For the MNIST and Fashion-
MNIST datasets, Convolutional Neural Network (CNN)
were used without applying TL or DA, optimized by SGD.
For CIFAR-10 and CIFAR-100, the adapted ResNet-50
model was employed, incorporating DA and optimized with
SGD. All models were trained for 50 epochs with batches
of 128 examples.

Different normalization parameters for the FL scenario
with heterogeneous data were applied to normalize MNIST,
Fashion-MNIST, CIFAR-10, and CIFAR-100 datasets for
MNIST, an average of 0.1307 and a standard deviation
of 0.3081. In the Fashion-MNIST dataset, the average
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and standard deviation of the parameters are 0.2860 and
0.3530, respectively. For CIFAR-10, the average values were
0.4914, 0.4822, and 0.4465, with standard deviations of
0.2023, 0.1994, and 0.2010, for the Red, Blue, Green
(RGB) channels, respectively. Finally, for CIFAR-100, the
averages were 0.5071, 0.4867, and 0.4408, and the standard
deviations were 0.2675, 0.2565, and 0.2761, respectively, for
the RGB channels. The model configurations are presented
in Table 4 following previously explained criteria.

TABLE 4: Model Configurations non-iid.

MNIST Fashion CIFAR-10 CIFAR-100
CONV-1 CONV-1 ResNet50 ResNet50

MP MP BN BN
CONV-2 CONV-2 LAYER-1 LAYER-1

MP MP LAYER-2 LAYER-2
FL-500 FL-500 LAYER-3 LAYER-3
FL-10 FL-10 LAYER-4 LAYER-4

SOFTMAX SOFTMAX GAP GAP
FL-512 FL-512

BN BN
DP-1 DP-1
FL-10 FL-100

SOFTMAX SOFTMAX

Note: BN: batch normalization; MP: max pooling; DP: dropout; FC: fully-
connected layer; GAP: global average pooling. Layer 1: three blocks (Conv,
BN, ReLU, MP); Layer 2: four blocks (Conv, BN, ReLU, MP); Layer 3: six
blocks (Conv, BN, ReLU, MP); Layer 4: three blocks (Conv, BN, ReLU,
MP).

E. EVALUATION METHODS AND METRICS
This section evaluates the methods used to identify unbiased
and high-quality neural networks. The evaluation process is
structured as follows.

• Dataset Utilization: Initially, the complete dataset is
utilized to analyze performance, providing a compre-
hensive overview of model capabilities (in the experi-
ment named All Data).

• Random Selection Method: A random selection
method was applied to ensure diversity and impartiality
during training. This technique is well-established in
the literature. It is considered an essential step towards
creating an adaptable and unbiased network to prevent
overfitting and ensure accurate responses to new data
challenges (in the experiment named Random).

• Model Comparison: The effectiveness of the trained
models was assessed by comparing their performance
across three distinct scenarios: using all available data,
applying a 50% random selection of data, and employ-
ing our proposed algorithm (EnBaSe) that selects half
of the dataset, which uses 50% of the data.

Subsequently, the evaluation employed the following met-
rics for a comprehensive comparison:

• Accuracy: Accuracy measures the proportion of cor-
rect predictions from the total samples, calculated by
dividing the hits by the total number of samples.

• Recall: Recall evaluates the proportion of correctly
identified true positives, calculated by dividing accurate
positive numbers by the total positive numbers plus
false negatives.

• F1-Score: The F1-Score is the precision and recall
harmonic value, indicating equilibrium between them.
Higher values indicate a better model performance. In
this specific case, it will be used as an additional metric
in the context of FL owing to the high heterogeneity
of the data.

• Loss: The loss function measures the error between
predictions and typical results, with specific functions
for each problem (e.g., cross-entropy for classification).
The goal is to minimize such losses to improve the
model.

• Learning Curve: Represents model performance over
time, comparing training and validation to detect over-
and under-fitting and verifying model convergence.

VI. EVALUATIONS AND RESULTS
A. DATA ANALYSIS
To validate our hypothesis regarding the role of entropy in
information quality selection, we analyzed its behavior and
examined how it was affected by normalization and DA
operations. Subsequently, we assessed data normalization’s
impact (scaling values 255 to match pixel sizes) on sample
selection by comparing entropy before and after normaliza-
tion.

The results demonstrated that entropy remained stable,
with an average similarity of 14 decimal places. These
results indicate that, despite changes in absolute values,
the probabilistic importance of the data—and, therefore, its
entropy—remains unchanged.

As expected, based on Information Theory, it is impor-
tant to note that entropy, by definition, is a measure of
uncertainty and disorder, and its invariance is an expected
outcome, as entropy focuses on relative probabilities rather
than absolute values. Table 5 presents the datasets before
and after normalization.

TABLE 5: Entropy Comparison (MNIST).

Image
Indexes

Before
Normalization

After
Normalization

27582 5.150483033018236 5.150483033018237
5760 5.242222088792437 5.242222088792438

29284 5.247872784912092 5.247872784912093
4484 5.291615062825755 5.291615062825755

18188 5.378906867665029 5.378906867665029
Image

Indexes Before DA After DA

57362 1.4863968283704654 1.4863968283704652
37920 1.4966680960341756 1.4966680960341756
21618 1.5087870622820911 1.5087870622820911
29180 2.0933393541022376 2.0933393541022376
3637 2.0933393541022380 2.0933393541022376

Following a similar approach, the experiments applied

12 VOLUME 4, 2016

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2025.3578301

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



Valente Neto et al.: Adding Data Quality to Federated Learning Performance Improvement

linear geometric transformations through DA techniques,
during which the entropy value remained constant. These
results confirm that entropy is determined by the intensity
levels of the pixels, irrespective of their spatial position. The
geometric transformations applied in DA, such as rotations
and translations, preserve the data structure and modify only
the position of the pixels while keeping their intensity values
unchanged.

Such findings conclude that entropy is unaffected by geo-
metric transformations, ensuring its relevance in areas where
preserving specific informational properties is essential.

B. ENTROPY DISTRIBUTION AND SAMPLE SELECTION
IN DATASETS
This study also explored the entropy behavior of the his-
tograms. Thus, the entropy value of each image was calcu-
lated, and a histogram was created to analyze the entropy
behavior in the dataset, as shown in Figure 6. The data
were analyzed according to iid and non-iid scenarios. The
study also investigated the uneven and imbalanced data
distribution in assorted clients using statistical tests, such
as Shapiro-Wilk, Kolmogorov-Smirnov, D’Agostino, and
Pearson tests, to analyze entropy characteristics.

FIGURE 6: Distribution of Classes and Data Distribution
after Entropy Calculation for MNIST.

During the development and experimentation of the
EnBaSe algorithm, we found that the entropy values of each
image, once calculated, sorted, and plotted in a histogram,
exhibit a distribution that closely resembles a Gaussian
distribution. This pattern holds for the MNIST, Fashion-
MNIST, CIFAR-10, and CIFAR-100 datasets where entropy
was applied.

Table 6 presents the results obtained from an average
of five experiments for the distribution analysis, where we
simulated 400 nodes receiving data in a distributed manner.
In addition, we developed a consensus algorithm, as detailed
in the table. This algorithm relies on a voting mechanism
that deems the distribution normal when at least two-thirds
of the remaining statistical tests confirm such characteristics.

i. MNIST (iid & non-iid): The class distribution in
MNIST is homogeneous and balanced in the iid envi-
ronment. In contrast, in non-iid, after entropy selection,
it is observed that the data in a large part of the
clients show a near-normal distribution. Entropy plays

TABLE 6: Statistical test results for different dataset sce-
narios.

Dataset Consensus Shapiro-
Wilk

Kolmogorov-
Smirnov

D’Agostino &
Pearson

MNIST 344 344 399 342
Fashion-MNIST 181 181 391 223

CIFAR-10 37 37 318 71
CIFAR-100 7 7 203 17

a significant role in bringing the distribution closer to
a Gaussian curve.

ii. Fashion-MNIST (iid and non-iid): In Fashion-
MNIST, after selection, the Gaussian distribution
presents itself less uniformly. In a considerable amount
of clients, the data follow a normal distribution.

iii. CIFAR-10 (iid & non-iid): In the CIFAR-10 set,
a small proportion of the clients displayed normally
distributed data after selection, indicating a less robust
statistical distribution.

iv. CIFAR-100 (iid & non-iid): For CIFAR-100, a mini-
mum number of clients displayed typically distributed
data. This set was the most challenging in terms of
approaching a Gaussian distribution.

Image datasets in state-of-the-art literature are composed
of levels of challenge complexity, presenting more straight-
forward and more difficult labels for training AI models.
From information theory, we know that data can possess
high or low entropy, and consequently, we observe a distri-
bution pattern that approaches a Gaussian distribution.

Therefore, this reinforces the hypothesis that, for images,
there is a dataset of complex pictures with high variabil-
ity and low predictability. Similarly, some data have low
variability and high predictability for low entropy. As such,
the EnBaSe model was constructed following an empirical
and experimental approach based on information theory and
state-of-the-art studies on entropy, utilizing low entropy and
data close to the central position of the distribution.

Finally, the same observation supports the selection of
a more robust metric, such as the median. Although these
results approximate a normal distribution, one cannot as-
sume that all datasets strictly follow the same pattern.
The asymmetric distributions identified in this experiment
indicate that the mean may shift towards the tails, potentially
causing underestimation or overestimation.

C. ENTROPY COMPUTATIONAL COST
We conducted a total of 120 iid experiments (10 simulations
for All Data, 10 for EnBaSe, and 10 for Random). In the
non-iid scenario, we performed 240 experiments: 10 simu-
lations each for the complete set, EnBaSe, and Random in
FedAvg, and another ten simulations each for the complete
set, EnBaSe, and Random in FedProx.

The entropy calculation times for the execution of the
image-selection (EnBaSe) process are listed in Table 7,
along with the average times for iid and non-iid environ-
ments, indicating the time required to compute the entropy
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of the entire dataset and select the samples.

TABLE 7: Average Time for Entropy Computation.

Dataset Distribution Average (s)
MNIST iid ≈1.76

Fashion MNIST iid ≈1.83
CIFAR-10 iid ≈3.64

CIFAR-100 iid ≈3.67
MNIST non-iid ≈2.77

Fashion MNIST non-iid ≈3.21
CIFAR-10 non-iid ≈5.57

CIFAR-100 non-iid ≈5.49
Note: Average client (node) time in non-iid configuration; Centered mean
time of dataset in iid configuration.

In addition, we highlight the use of Google Colabo-
ratory (GC) for simulations in a Cloud Computing (CC)
environment. We employed the T4 architecture, featuring
high-speed memory, 12 Gigabyte (GB) of Random Access
Memory (RAM), 15 GB Graphics Processing Units (GPU),
and a 201.2 GB disk. We trained the iid scenario in a central-
ized environment using Scikit-learn, reflecting the sequential
nature of the operations without advanced parallelization. In
contrast, we used TensorFlow for the non-iid scenario.

D. EVALUATION IN THE IID SCENARIO
This section discusses the experimental results obtained
under the iid scenario. Thus, we can evaluate the hypothesis
that entropy influences the training process as a measure
of data quality. The results include analyses of the MNIST,
Fashion-MNIST, CIFAR-10, and CIFAR-100 datasets across
various configurations, focusing on the data distribution,
accuracy, recall, and error rate.

The table 8 presents the datasets used in the experiment
for the iid scenario within a centralized architecture. These
datasets, widely recognized in the literature, play a pivotal
role in advancing ML as they enable the evaluation of deep
neural network performance under diverse challenges and
varying levels of complexity.

The MNIST dataset provides an essential starting point
for model development because of its simplicity and
widespread adoption in introductory studies. Conversely, the
Fashion-MNIST dataset increases the complexity compared
to MNIST, encompassing more diverse and challenging
visual data. Meanwhile, the CIFAR-10 and CIFAR-100
datasets represent significant challenges as they involve
image classification in more varied and complex scenarios,
necessitating models with greater generalization capabilities.

TABLE 8: Datasets in centralized architecture.

Dataset Description Classes Distribution Architectures
MNIST Handwritten digits 10 iid Centralized

Fashion-MNIST Clothing items 10 iid Centralized
CIFAR-10 Various objects 10 iid Centralized

CIFAR-100 100 categories 100 iid Centralized

We distributed 120 experiments equally among the All
Data, Random, and Entropy categories, as shown in Figure
7. In the MNIST dataset experiments, we focused on using
entropy to guide data selection for this research. We con-
ducted 30 experiments: 10 using the entire dataset, 10 with
random selection, and 10 employing the proposed EnBaSe
algorithm.

FIGURE 7: EnBaSe MNIST Training.

Figure 7 shows that the training and validation curves of
EnBaSe are close, and when the validation curve surpasses
the training curve, it indicates better generalization. A higher
validation curve suggests that the model may benefit from
regularization, thereby improving its generalization to new
data.

The increase in the loss curve and reduction in the
learning curve suggest that the model is starting to memorize
the training data, indicating the need to adjust the learning
rate to prevent deeper layers from learning less helpful
patterns.

In the study involving the Fashion-MNIST dataset shown
in Figure 8, we applied EnBaSe and presented a learning
curve. We found a consistently higher validation curve than
the training curve for the Fashion-MNIST dataset. There-
fore, this suggests that the model effectively generalizes to
unseen data, highlighting potential areas for improvement
during the training process.

FIGURE 8: EnBaSe Fashion-MNIST Training.

Finally, we observed a positive and steady evolution in
the learning curve, accompanied by a continuous decrease
in loss for both the training and testing data. Consequently,
this indicates that with each epoch, the model improves its
ability to minimize the loss function and becomes progres-
sively more accurate.
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In Figure 9, the overlay of the training and validation
curves, with only slight fluctuations where they intersect,
generally indicates positive performance. As a result, the
model consistently performed well on both the training
and validation datasets. Their proximity suggests that the
model is efficiently generalized, effectively transferring the
knowledge acquired during training to the validation data.

FIGURE 9: EnBaSe CIFAR-10 Training.

This scenario indicates a balance between bias and vari-
ance. A low bias reveals that the model can understand
the complexity inherent in the data. Simultaneously, a low
variance suggests that the model does not overfit the training
data, allowing for good performance on the new data.

The learning curve, with a constant and high learning
rate, and the loss curve, with reduced values, indicate that
the model has reached or is close to its maximum poten-
tial within the constraints of its architecture and training
settings.

As illustrated in Figure 10, the validation curve initially
starts above the training curve, likely because of the com-
position of the training and validation sets, which helps the
model learn more effectively. As the training progressed,
the curves converged, reflecting the ability of the model to
optimize its learning without sacrificing generalization.

FIGURE 10: EnBaSe CIFAR-100 Training.

The decline in the training and validation losses over
time confirms that the model learns effectively and avoids
overfitting. For CIFAR-100, a well-known benchmark in
image recognition, the EnBaSe algorithm exhibited a strong
performance in handling the complexity of the dataset
while preserving the model’s generalization capability. For
this reason, this highlights the effectiveness of EnBaSe in
achieving efficient learning without introducing a bias that
compromises the model’s performance.

Table 9 presents the EnBaSe algorithm, which seeks
to improve data quality by emphasizing consistency and
precision, retaining only quality data, and reducing com-
putational cost. We compared this algorithm with a random
selection method, which tends to minimize selection bias
and make the model more robust and less dependent on
specific features.

In doing so, observing the general scenario of complete
datasets and entropy behavior about a robust technique is
possible. For a fair comparison, half of the set was used as
a random dataset.

Furthermore, it presents the average results of the experi-
ments with All Data, EnBaSe, and Random, which resulted
in a minimal reduction in the accuracy for MNIST. For
Fashion-MNIST, we observed the same pattern of accuracy.
In CIFAR-10, the same accuracy pattern was observed.

Finally, for CIFAR-100, a benchmark in the CV field with
100 classes, a minimal and acceptable loss in processing
cost savings was observed. In addition, a reduction in the
overall computational cost for MNIST, Fashion-MNIST, and
CIFAR-10 was evident without a significant compromise in
accuracy.

As shown in Table 9, the EnBaSe algorithm demonstrated
robust and consistent results when selecting half of the
datasets, preserving the accuracy with minimal possible loss
of quality. Comparing the results obtained with the accuracy
reported in other state-of-the-art studies, it is evident that the
algorithm is robust, highly scalable, lightweight, and can be
easily integrated into embedded systems.

Furthermore, the algorithm exhibits high adaptability and
can address various challenges in the field of CV using
different architectures. Its efficiency is also evidenced by
the reduction in computational costs and the acceleration
of the convergence time of the AI model, enabling faster
responses to events and dynamic environments, where time
and computational cost are critical factors. For example,
onboard health systems in the AI model can take significant
time to acclimate to a patient’s patterns.

Thus, we conclude that in the scenario with centralized
data and iid, the EnBaSe algorithm is a computationally
efficient solution that optimizes the selection of samples
from the dataset with application in the field of CV. Its
integration into embedded systems allows it to be applied
dynamically as an AI tool in different centralized learning
systems.

Table 10 presents a comparison with the available data
from other studies that utilized similar neural network archi-
tectures, including the training and validation sets provided
by the authors in recent studies, representing the state-of-
the-art.
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TABLE 9: Average results of the iid experiment.

Dataset Type Training Validation Test Time (s)Accuracy (%) Recall (%) Loss Accuracy (%) Recall (%) Loss Accuracy (%)
Mnist All Data ≈ 99.53 ≈ 99.52 ≈ 0.038 ≈ 98.95 ≈ 98.94 ≈ 0.049 ≈ 99.19 ≈ 73
Mnist EnBaSe ≈ 99.28 ≈ 99.27 ≈ 0.070 ≈ 98.64 ≈ 98.61 ≈ 0.050 ≈ 97.61 ≈ 32
Mnist Random ≈ 99.49 ≈ 99.49 ≈ 0.055 ≈ 99.49 ≈ 98.77 ≈ 0.058 ≈ 98.93 ≈ 36

Fashion All Data ≈ 92.12 ≈ 92.11 ≈ 0.279 ≈ 90.78 ≈ 90.79 ≈ 0.253 ≈ 89.73 ≈ 17
Fashion EnBaSe ≈ 92.41 ≈ 92.41 ≈ 0.262 ≈ 91.06 ≈ 91.06 ≈ 0.246 ≈ 79.62 ≈ 10
Fashion Random ≈ 91.29 ≈ 91.29 ≈ 0.308 ≈ 88.98 ≈ 88.99 ≈ 0.303 ≈ 88.50 ≈ 10

CIFAR-10 All Data ≈ 90.93 ≈ 90.93 ≈ 0.395 ≈ 86.43 ≈ 86.44 ≈ 0.403 ≈ 85.90 ≈ 1, 019
CIFAR-10 EnBaSe ≈ 89.22 ≈ 89.21 ≈ 0.441 ≈ 82.05 ≈ 82.03 ≈ 0.558 ≈ 78 ≈ 501
CIFAR-10 Random ≈ 90.12 ≈ 90.10 ≈ 0.450 ≈ 82.23 ≈ 82.23 ≈ 0.554 ≈ 81.78 ≈ 505

CIFAR-100 All Data ≈ 79.33 ≈ 79.33 ≈ 0.948 ≈ 72.32 ≈ 72.31 ≈ 0.947 ≈ 71.92 ≈ 16, 393
CIFAR-100 EnBaSe ≈ 77.38 ≈ 77.37 ≈ 1.114 ≈ 67.68 ≈ 67.69 ≈ 1.134 ≈ 65.04 ≈ 10, 398
CIFAR-100 Random ≈ 77.26 ≈ 77.26 ≈ 1.150 ≈ 67.41 ≈ 67.41 ≈ 1.129 ≈ 66.66 ≈ 12, 775

Note: The MNIST and Fashion models were trained for ten epochs, whereas the CIFAR-10 and CIFAR-100 models were trained for 50 epochs.

TABLE 10: Performance Comparison (iid) with Different
Works.

Dataset Architecture Author Training Validation
Mnist CNN-2 [70] 97.07 -
Mnist CNN [71] 98.54 97.76
Mnist CNN-1 [70] 99.21 -
Mnist CNN EnBaSe 99.28 98.64

Fashion CNN EnBaSe 92.41 91.06
Fashion MCNN-14 [72] 93.08 -
Fashion CNN-1 [73] 95.22 88.95
Fashion CNN-2 [73] 98.01 93.11

CIFAR-10 CNN-2 [74] 85.90 -
CIFAR-10 CNN-1 [74] 87.57 -
CIFAR-10 CNN EnBaSe 89.22 82.05
CIFAR-10 CNN [71] 98.91 97.71

CIFAR-100 FC-CNN-Lab [75] 42.26 -
CIFAR-100 CNN-1 [76] 63.50 -
CIFAR-100 CNN-2 [76] 68.60 -
CIFAR-100 CNN EnBaSe 77.38 67.68

Note: The values of accuracy provided by the authors for training and
validation.

The experiments in this section demonstrate that the
EnBaSe method may slightly underperform compared to
training with the entire dataset, resulting in a minor accuracy
reduction. This difference becomes more pronounced in
complex benchmarks, such as CIFAR-100 (Table 9).

Furthermore, the experiments demonstrate that, although
computationally efficient, reducing the cost and convergence
time by 50%—the EnBaSe method exhibits an average
accuracy loss of 3%. On CIFAR-100, this reduction is
even more significant, achieving an accuracy of 67.68%,
compared to 72.32% for the “All Data” method during
validation.

The experiments on CIFAR-100, with only 500 images
per class, challenged the EnBaSe method, which selects 250
high-quality images per class. Despite this careful selection,
the limitation in sample size contributes to suboptimal
results in this more complex scenario.

Finally, in Table 10, in the scenario with centralized
and distributed data in a iid manner, EnBaSe performance
demonstrates consistency with other studies available in the

literature. The model achieves the highest accuracy on the
MNIST dataset, with 99.28% in training and 98.64% in
validation.

In the case of Fashion-MNIST, EnBaSe presents an accu-
racy of 92.41%, in contrast to one of the best models, which
registers 98.91%. EnBaSe obtains 91.01% for validation,
while the best model reaches 93.11%.

For CIFAR-10, EnBaSe achieved an accuracy of 89.22%,
while the best model achieved 98.91%. EnBaSe achieved
82.05% in validation, compared to 97.71% for the best
model.

In the case of CIFAR-100, EnBaSe presented an accu-
racy of 77.38%, surpassing the second-best model, which
achieved 68.60%. In this scenario, it is observed that most
of the authors did not provide validation samples, limiting
more detailed comparisons.

E. EVALUATION IN A NON-IID SCENARIO

Table 11 lists the datasets evaluated for the FL architecture.
The selected datasets have varying levels of complexity and
represent diverse challenges in the field of ML. For instance,
the MNIST dataset is a starting point for state-of-the-
art experiments. In contrast, Fashion-MNIST offers greater
complexity and poses a more significant challenge than
MNIST. Finally, the CIFAR-10 and CIFAR-100 datasets
present substantial challenges for the state-of-the-art models.

The MNIST, Fashion-MNIST, CIFAR-10, and CIFAR-
100 datasets, the distribution skew discussed in Section V-C
was applied. In this scenario, each node (e.g., device) par-
ticipating in the training within the FL architecture receives
data allocations randomly.

This randomness results in a non-uniform distribution,
meaning that specific classes are not guaranteed to be
equally represented or assigned to each node. This method
aims to ensure that the differences observed between nodes
arise from intrinsic randomness rather than systematic bias.
This approach aims to replicate the diversity present in
real-world IoT scenarios, allowing each node to contribute
unevenly, thereby simulating realistic conditions.
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TABLE 11: Datasets in FL architecture.

Dataset Description Classes Distribution Architectures
MNIST Handwritten digits 10 non-iid FL

Fashion-MNIST Clothing items 10 non-iid FL
CIFAR-10 Various objects 10 non-iid FL

CIFAR-100 100 categories 100 non-iid FL

In the non-iid scenario, we conducted 240 experiments
to identify the model’s behavior in a non-iid environment,
focusing on optimizing data quality and reducing computa-
tional costs.

Figures 11 (a) and 11 (b) show the results of FL applied
to the MNIST dataset, using the FedAvg and FedProx
algorithms, respectively. Similarly, Figures 12 (a) and 12 (b)
show the same algorithms applied to the Fashion-MNIST
dataset. In addition, the results for the CIFAR-10 set are
illustrated in Figures 13 (a) and 13 (b), while those for
CIFAR-100 are represented in Figures 14 (a) and (b).

(a) FedAvg convergence.

(b) FedProx convergence.

FIGURE 11: MNIST: EnBaSe (FedAvg & FedProx).

Table 12 presents the results obtained from 240 exper-
iments, providing the average precision, recall, F1-score,
accuracy, loss, and training time. These results enable the
observation of how entropy influences data quality and
reduces computational and energy costs.

Half of the dataset was randomly selected using the
Random method to ensure a fair comparison and follow the
same methodology. As a result, this allowed for comparing
training with a complete dataset and training using an
entropy-based selection. All models in the table followed
the same training pattern using 50 epochs with ten available
nodes participating.

(a) FedAvg convergence.

(b) FedProx convergence.

FIGURE 12: Fashion-MNIST’s: EnBaSe (FedAvg & Fed-
Prox).

(a) FedAvg convergence.

(b) FedProx convergence.

FIGURE 13: CIFAR-10: EnBaSe (FedAvg & FedProx).

Consequently, it is possible to highlight the quality se-
lection strategy using EnBaSe, which demonstrates a sig-
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(a) FedAvg convergence.

(b) FedProx convergence.

FIGURE 14: CIFAR-100: EnBaSe (FedAvg & FedProx).

nificant reduction in training time compared to the model
using the entire dataset. This observation was confirmed by
examining the training times of all the EnBaSe and Random

datasets.
Additionally, we noted a slight decrease in the overall

accuracy of the EnBaSe model compared to the entire
dataset model. Finally, in the global aggregation method,
FedProx EnBaSe proved particularly effective over time,
significantly reducing computation time while maintaining
acceptable accuracy levels.

The results presented in Table 12 compare EnBaSe and
All Data using the same neural network architecture and
hyperparameters. Although EnBaSe reduces the computa-
tional cost by approximately 50%, and the metric results
are close and comparable, there are minor losses in precision
and accuracy across nearly all models.

This slight performance drop is evident in most datasets,
where EnBaSe demonstrates small reductions in metrics
such as accuracy, precision, recall, and F1-score compared
to the entire dataset (e.g., All Data) as shown in Table 12.

Moreover, Table 12 also indicates that, in some cases, the
loss values are slightly higher than those observed with All
Data, suggesting that EnBaSe has not yet achieved complete
convergence. This observation highlights the importance of
more refined adjustments to hyperparameters and the neural
network architecture to improve performance.

F. BENCHMARK: MULTIPLE CLIENTS AND HIGH LOAD
This section revisits the experiment conducted under the
non-iid scenario using the same criteria for the evaluation
metrics specified in Section V-C. The neural networks
employed were the same as those introduced in Section
V-D, and the detailed experimental configurations are given

TABLE 12: Average Experiment results with FedAvg and FedProx.

Dataset Algorithm Model Selection Precision Recall F1-Score Accuracy (%) Loss Time (s)
Mnist FedAvg All Data ≈74.30% ≈74.40% ≈71.90% ≈85.70% ≈0.253 ≈1,096
Mnist FedAvg EnBaSe ≈66.10% ≈66.50% ≈62.60% ≈78.91% ≈0.193 ≈586
Mnist FedAvg Random ≈42.50% ≈40.20% ≈34.60% ≈56.80% ≈0.248 ≈555
Mnist FedProx All Data ≈69.26% ≈71.40% ≈67.48% ≈81.73% ≈0.179 ≈1,180
Mnist FedProx EnBaSe ≈69.28% ≈68.93% ≈66.01% ≈81.26% ≈0.264 ≈629
Mnist FedProx Random ≈42.55% ≈42.97% ≈37.81% ≈59.13% ≈0.264 ≈606

Fashion FedAvg All Data ≈56.80% ≈52.70% ≈47.50% ≈62.21% ≈1.753 ≈1,084
Fashion FedAvg EnBaSe ≈53.80% ≈49.70% ≈45.40% ≈58.90% ≈1.572 ≈556
Fashion FedAvg Random ≈27.80% ≈25.50% ≈20.70% ≈39.90% ≈3.505 ≈574
Fashion FedProx All Data ≈60.30% ≈57.10% ≈52.30% ≈66.60% ≈1.390 ≈1,125
Fashion FedProx EnBaSe ≈55.70% ≈52.50% ≈47.60% ≈60.80% ≈1.709 ≈601
Fashion FedProx Random ≈26.50% ≈24.80% ≈18.80% ≈35.90% ≈3.856 ≈632

CIFAR-10 FedAvg All Data ≈47.80% ≈41.50% ≈34.40% ≈43.12% ≈1.749 ≈14,958
CIFAR-10 FedAvg EnBaSe ≈43.90% ≈38.40% ≈32.70% ≈40.32% ≈1.889 ≈8,259
CIFAR-10 FedAvg Random ≈8.96% ≈9.97% ≈2.72% ≈10.01% ≈4.274 ≈8,205
CIFAR-10 FedProx All Data ≈46.12% ≈38.75% ≈32.33% ≈39.53% ≈2.009 ≈15,662
CIFAR-10 FedProx EnBaSe ≈43.69% ≈37.39% ≈32.12% ≈40.42% ≈1.821 ≈8,413
CIFAR-10 FedProx Random ≈8.79% ≈9.99% ≈3.06% ≈10.09% ≈4.776 ≈8,394
CIFAR-100 FedAvg All Data ≈47.84% ≈41.18% ≈34.85% ≈43.24% ≈1.715 ≈15,214
CIFAR-100 FedAvg EnBaSe ≈44.70% ≈39.75% ≈33.98% ≈43.57% ≈1.744 ≈8,131
CIFAR-100 FedAvg Random ≈8.31% ≈9.96% ≈2.27% ≈10.00% ≈5.092 ≈8,274
CIFAR-100 FedProx All Data ≈55.41% ≈55.84% ≈51.94% ≈63.08% ≈1.834 ≈18,020
CIFAR-100 FedProx EnBaSe ≈48.01% ≈46.41% ≈42.99% ≈53.54% ≈2.198 ≈8,202
CIFAR-100 FedProx Random ≈27.70% ≈35.71% ≈28.29% ≈41.20% ≈3.345 ≈8,418

Note: The datasets were trained for 50 epochs with ten available clients (nodes).
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in Section V-B. To better understand the general idea
presented in the initial hypothesis of this work regarding the
quality of local data at the edge (EnBaSe), we conducted a
benchmark with FedProx, a model developed for challenges
in more realistic scenarios, aligned with challenging skewed
distributions.

This test will help us understand how an edge-embedded
algorithm for improving quality interacts with a more so-
phisticated global aggregation technique. In other words, we
consider both sides of the federated learning process: the
edge and the global neural network.

We kept the same settings for the neural network’s ar-
chitecture and parameters to test the model’s efficacy under
challenging conditions. We utilized the following hardware:
83 GB of RAM, 40 GB GPU, and 201 GB storage. The
number of clients and epochs was increased to 50 and 100,
respectively. We evaluated the algorithm’s capacity using a
large workload and data diversity.

This adjustment aims to replicate an advanced compu-
tational system for rigorous model analysis under high
demand. In doing so, we can observe that with many clients
(devices with datasets), the EnBaSe algorithm managed to
approach smooth convergence.

(a) Global model convergence over 100 epochs for the
CIFAR-10.

(b) The FedProx algorithm clients converged over 100
epochs for 50 clients at CIFAR-10

.
FIGURE 15: Global model and clients (nodes) convergence
for 100 epochs and 50 clients at CIFAR-10

for the FedProx algorithm.

The results presented in Figures 15 and 16 for the
CIFAR-10 and CIFAR-100 benchmarks, respectively, show
the performance of the FedProx model using EnBaSe over
100 epochs with 50 clients (nodes). For CIFAR-10, the
model achieved a precision of 82.20%, recall of 81.51%,
F1-Score of 81.32%, and accuracy of 84.46%, with a loss
value of 0.515, and a training time of 47,011.90 seconds.
For CIFAR-100, the precision was 71.71%, recall 70.83%,
F1-Score 70.69%, and accuracy 72.84%, with a loss value

(a) Global model convergence over 100 epochs for
CIFAR-100.

(b) FedProx algorithm clients convergence over 100
epochs for 50 clients at

CIFAR-100.
FIGURE 16: Global model and clients (nodes) convergence
for 100 epochs and 50 clients at CIFAR-100

for the FedProx algorithm.

of 1.216 and a training time of 46,983.84 seconds.
Furthermore, the model reached the maximum neural

network architecture accuracy plateau much earlier than
the total number of training epochs. The EnBaSe model
significantly reduced the processing time, approximately
halving the computational cost. Therefore, this implies that
the energy consumption and computational expenses would
be considerably higher if the experiment were conducted
again without the proposed EnBaSe algorithm.

Table 13 presents the benchmark test results of EnBaSe,
along with a comparison with other recent studies us-
ing state-of-the-art methods to evaluate the effects of the
EnBaSe algorithm on accuracy. Thus, we compiled optimal
results from the experiments reported in this article.

TABLE 13: Performance of Models on CIFAR-10 and
CIFAR-100 Datasets in the non-iid Scenario.

Dataset Architecture Author Model Acc (%)

CIFAR-10

CNN [77] Scaffold-Vanilla 26.65
CNN [77] FedProx-Vanilla 27.42
CNN [77] FedAvg-Vanilla 58.57
CNN [78] AdaFedAdam 72.77
CNN [79] FedCOME 75.88
CNN Our Model FedProx (EnBaSe) 84.46
CNN [46] FedPer++ 85.09
CNN [47] FedAvg (Adapted) 90.80

CIFAR-100

CNN [77] Scaffold-Vanilla 4.49
CNN [77] FedProx-Vanilla 10.39
CNN [19] FedHKD 29.88
CNN [79] FedCOME 37.66
CNN [61] Fed-IT 39.29
CNN [77] FedAvg-Vanilla 40.36
CNN [80] FedProx(FedFed) 70.02
CNN Our Model FedProx (EnBaSe) 72.84

In this work, we compared the results of the proposed
algorithm, obtained in Section VI-E (Table 12), where FL
was applied, with the benchmark results presented in this
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section (Table 13).
This comparison considered the increase in the number

of connected devices from 10 to 50, as well as the in-
crease in the number of training epochs from 50 to 100,
representing a higher workload and an additional challenge
for the algorithm (EnBaSe). The analysis focuses on the
two most challenging datasets, CIFAR-10 and CIFAR-100,
which provide a solid foundation for the evaluation.

We observed that, in the case of CIFAR-10 and CIFAR-
100, the precision values for FedProx EnBaSe improved
from 40.42% and 53.54% to 84.46% and 72.84%, respec-
tively. These results indicate that the algorithm performs
increasingly better as more devices are connected, even in
more challenging scenarios.

Finally, Table 13 compares the results obtained with the
state of the art. The most challenging datasets and the
results obtained by different methods were considered. In
the context of the CIFAR-10 dataset, in a non-iid scenario,
the EnBaSe model achieved an accuracy of 84.46%, a
performance comparable to that of FedPer++ (85.09%) and
superior to that of FedCOME (75.88%).

In the case of the CIFAR-100 dataset, EnBaSe presented
an accuracy of 72.84%, significantly outperforming other
models, such as FedCOME (37.66%) and Fed-IT (39.29%).
These results demonstrate the efficiency of EnBaSe in opti-
mizing data selection, reducing computational costs without
significantly compromising the accuracy of the models.

VII. DISCUSSION
We hypothesized that entropy can be used to measure data
quality, considering that it quantifies the uncertainty or
unpredictability in each node. A high entropy value indicates
that data are highly unpredictable or vary within a node. As a
result, each dataset in a node provides significantly different
information, making it difficult to predict based on previous
information.

Thus, the hypothesis was tested using the low entropy in
each node, which was measured as a separation criterion
to avoid asymmetry. For clarification purposes, this study
analyzes hypotheses regarding data quality in nodes and
the reduction of computational costs in the field of CV in
collaboration with a laboratory involved in a project under
contractual confidentiality, focusing on monitoring devices
that complement data related to biosignals, where embedded
systems have low processing power. This study, related to
the field of CV, conducted initial experiments using a CNN,
as it is relatively more straightforward and cost-effective.

We searched for keywords in conjunction with the names
of the MNIST, Fashion-MNIST, CIFAR-10, and CIFAR-100
datasets, including time benchmark, training benchmark,
training time comparison, training time performance, opti-
mization training time, throughput training time, throughput
training performance, and various combinations of these
words. No studies in the literature have provided simulations
of variations in the implemented hardware, training times, or
times per epoch. Therefore, we compared the latest metrics

from the most recent state-of-the-art models with those in
this study.

One of the difficulties encountered in the literature during
the development of this study was the need for more
standardization of the experiments presented. Many studies
provide only partial data without including essential metrics,
such as validation, F1-score, recall, loss values, or the
model’s training time. Finally, one of the limitations of this
study was the budget for the experiments, which led us to
reduce the number of epochs to 50 and the number of nodes
to 10 because of the large number of experiments conducted,
as stated in Subsection VI-E.

Recent state-of-the-art approaches in FL architecture and
centralized architectures predominantly focus on enhancing
data homogeneity and addressing the heterogeneity and
challenges associated with non-iid distributions.

However, such approaches often overlook fundamental
considerations regarding the computational capacity of de-
vices and the resources required for neural networks to
achieve a high generalization capability.

This issue is critical for fostering more significant equity
in the integrability and applicability of systems designed for
architectures with low computational and energy capacities,
which is the primary focus of this study.

Thus, the EnBaSe algorithm is efficient in optimizing the
computational resources allocated to the neural network,
such as the bandwidth used for global model updates in
FL or data transfer in a centralized architecture, achieving
up to a 50% reduction in communication.

This optimization also reduces the time required for
training the neural network and, correspondingly, decreases
the energy consumption, as models utilizing the EnBaSe
algorithm complete training at least 50% faster.

To better understand this relationship. Energy is directly
related to Consumption Power from devices and Execution
time based on the following formula:

E = P (Whatts)× Execution_time(s)

Where E represents the energy consumed, P is the
device’s power in Watts, and Execution_time in seconds
is the duration of use. Thus, a decrease in execution time
directly impacts the battery saving for the IoT devices in
the same percentage ratio as the reduction in execution
time. This is an important benefit of the EnBaSe algorithm
strategy.

Moreover, this advancement is particularly relevant for
systems with energy and computational constraints, such as
smart devices operating with limited resources, including
drones or AI-powered medical equipment with low process-
ing capabilities. The proposed approach applies to a wide
range of systems.

As a result, the neural network applied to the dataset,
referred to as "All Data," encompasses the entirety of the
available data, whereas EnBaSe functions as a systematic

20 VOLUME 4, 2016

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2025.3578301

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



Valente Neto et al.: Adding Data Quality to Federated Learning Performance Improvement

data mapping mechanism that effectively represents the map
of an information system.

Finally, the analyses conducted in this study confirmed the
feasibility of using an algorithm that enhances data quality
while reducing computational and energy processing costs.

VIII. CONCLUSION
This study highlights the significance of assessing the qual-
ity of input data. Entropy experiments demonstrated that
it retains probabilistic relevance even after linear transfor-
mations. Moreover, because entropy preserves consistent
probabilistic values for the data and remains unaffected
by linear geometric transformations, we can effectively
leverage it for data selection before applying DA techniques
and normalization, optimizing resource utilization. This ap-
proach is particularly beneficial for ML techniques, which
are crucial in the context of the IoT, where the processing
capacity of devices is often limited.

The primary method used in this study was implementing
the EnBaSe algorithm, which selects data based on its
entropy to improve data quality in iid and non-iid scenarios.
The algorithm is designed to reduce computational costs
while maintaining acceptable performance. It is instrumental
in FL for IoT devices, where computational resources are
limited, and non-iid mitigation is essential.

Additionally, the consistency of the results demonstrates
that this approach has significant applications in real-world
systems, where controlling data volume, data quality, and
computational resources is critical. Examples include CV,
image processing, traffic monitoring, automated inspection,
digital health, diagnostics, and more.

The main contributions of this study include:

• A detailed study on the behavior of entropy in images
and its distribution in CV;

• Analysis of the impact of linear transformations and
normalization on data entropy;

• Reducing the computational cost of IoT edge devices;
• The presentation of detailed metrics such as accuracy,

F1-score, recall, loss values, and model training time;
• Organizing the metrics to serve as a reference for future

experiments;
• The comparison of accuracy in iid and non-iid scenar-

ios with other experiments;
• A comprehensive literature review on data quality and

FL; and
• The development of the EnBaSe algorithm, which

efficiently selects high-quality data based on entropy
analysis. This method reduces unnecessary computa-
tional processing, optimizes model convergence, and
improves data selection for FL and centralized learning
scenarios, particularly in resource-constrained environ-
ments such as IoT.

Currently, global aggregation models for FL are being
developed to comprehensively address the challenges in-
herent in weight aggregation, including data distribution,

customer selection, heterogeneity, and temporal and spa-
tial dependencies, especially in scenarios characterized by
non-iid samples. However, with these experiments, we have
shown that it is possible to use algorithms in edge devices
so that they can autonomously solve the challenges related
to data distribution, simplifying the approaches present in
the state-of-the-art.

Finally, one of the most important contributions of this
study is an embedded algorithm that adaptively operates on
edge IoT devices based on their distribution and seamlessly
integrates with any aggregation model for FL.

In conclusion, the algorithm selects subsets of each class
with lower entropy, aiming to increase the predictability
of the system as discussed in Subsection II-C and Section
IV. Thus, the inherent heterogeneity of each device is
reduced based on its dataset, handling data asymmetry (e.g.,
extreme data, outliers) based on the distribution of each
class, as specified in the algorithm IV-C. In this process, the
sample tends to approximate a Gaussian, and the equivalent
part with lower entropy is selected, as demonstrated in
Subsection VI-B. Additionally, subsequent investigations
will be carried out to elucidate the characteristic behaviors
of extreme data when analyzed using various analytical
techniques.

This section presents the main conclusions of this study.
At the same time, Section IX explores the future directions
for developing this research, discussing the key areas that
warrant further investigation.

IX. FUTURE WORKS AND DIRECTIONS
Future research will focus on adapting the algorithm to
more scenarios and integrating it with other optimization
techniques. In summary, future research should expand
the algorithm’s applicability to other data types and FL
scenarios.

Furthermore, related research on the convergence of
global models aims to prevent excessive training and mini-
mize the associated computing costs and energy consump-
tion.

In future work, we intend to expand the experiments
to create more significant variability in non-iid and iid
scenarios, for example, by using the Dirichlet distribution,
and increase comparisons by using other methods such as
FedDyn, FedDF, Scaffold, and FedLAW. Thus, evaluating
EnBaSe using aggregation methods that adopt different
strategies allows us to identify the contexts in which perfor-
mance remains more robust and where potential improve-
ments are possible. This provides a deeper understanding
of its behavior across diverse scenarios and solidifies its
strengths and limitations for future advancements. Also, we
will evaluate the individual impact of EnBaSe on energétic
consumption on the IoT devices.

This simulated experiment indicated a strong tendency for
adoption feasibility in the current AI algorithms. Since the
experiments with EnBaSe demonstrated its initial feasibility,
future work will conduct evaluations into experiments under
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real-world operational conditions. In addition, we will also
execute FL experiments on real-world IoT devices to capture
fine-grained adjustments in our algorithm.

Finally, for future work, we intend to revisit the state of
the art and explore other application domains of artificial
intelligence for FL algorithms. In addition, we intend to
investigate new metrics that complement or extend those
currently used in the state-of-the-art.
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X. STATE-OF-THE-ART APPROACHES AND METHODS
In this section, we present a table of the state-of-the-art
based on a systematic literature review. We identify the main
approaches used, the scenarios in which the models have
been applied, and/or the scenarios explored by the authors
in their studies. We have also highlighted the main data sets
and the metrics adopted and systematically identified the
advantages and disadvantages pointed out by the authors in
their respective works. In cases where this information was
not explicitly mentioned, we analyzed possible positive or
negative impacts based on the available evidence.

As we can see from the state-of-the-art analysis in Table
14, common approaches that employ customer aggregation,
selection, sampling, or customer contribution measurement
techniques stand out. This strategy is one of the most
frequent and prevalent for dealing with device heterogeneity.
Many of these methods are adaptive, seeking to extract char-
acteristics to train neural networks and face the challenges
posed by the data.

On the other hand, a second approach, which has been
gaining relevance, is based on Information Theory. This line
of research seeks to quantify information gain and system
homogeneity based on entropy, as discussed by [18], [25],
[35], [39], [56], [60], [61].

The main application scenarios in the literature predom-
inantly involve the IoT or FL context, i.e., environments
characterized by multiple connected devices and distributed
data. While some authors direct their studies to scalability
issues in multi-client systems, communication efficiency, or
solving specific problems in the literature, others focus on
specific application areas, such as medical or noisy data.

The primary datasets used are those widely known in
the literature, such as MNIST, Fashion-MNIST, CIFAR-10,
and CIFAR-100. These datasets represent different levels of
difficulty and complexity in problems related to deep neural
networks, with CIFAR-100 ultimately considered one of the
most challenging benchmarks in the field.

On the other hand, some authors use other datasets
for additional analysis, targeted at specific applications or
designed for particular challenges. For example, in [56], a
dataset of crop pest images was used, while in [35], proteins-
related datasets were analyzed.

The primary metrics adopted often include accuracy,
communication cost, efficiency, precision, recall, F1-Score,
and Mean Absolute Error (MAE). In addition, some authors
use metrics such as communication per round, TPR (True
Positive Rate), TNR (True Negative Rate), entropy index,
and Standard Deviation.

The main focus and advantages discussed in the papers
are related to developing more adaptive systems capable of

dealing with convergence, performance, efficiency, and dif-
ficulties associated with training neural networks in non-iid
scenarios. These aspects are often pointed out as the main
problems faced by FL in the literature.

Despite these advances, many solutions still present sig-
nificant challenges in achieving global model convergence.
These difficulties include loss of accuracy at the end of
training, instability at critical moments of convergence,
and disadvantages associated with adding complexity to
architectures. Furthermore, this generally results in higher
computational costs and problems related to increased mod-
eling complexity.

A. DISCUSSION
We concluded that some articles address class balancing
or heterogeneity, while few emphasize issues such as fair-
ness in FL or bias mitigation. In addition, we found that
most papers focus on communication efficiency and data
heterogeneity, addressing FL by discussing the importance
of privacy and the relevance of IoT devices.

Although some authors have explored strategies to re-
duce communication costs, improve convergence, energy
efficiency, and gains in computational performance and gen-
eralization of neural networks, there is a lack of standardized
metrics for FL experiments. Standardized metrics that con-
sider the distribution of results and computational efficiency
are particularly relevant in scenarios with IoT applications,
where energy efficiency is as crucial as accuracy, especially
on devices with limited computational resources.

Most studies mention FL training in IoT systems (e.g.,
smart cities, medical applications, industrial applications,
etc.). However, these topics are not widely explored in
problems where prediction needs to occur in real-time, such
as continuous data flows. In addition to the adaptive models
often used, it would be interesting to consider approaches
based on online learning in the context of FL. These systems
would need to adapt dynamically and make inferences with
low latency, which would be highly relevant for smart cities.

Another aspect highlighted in the literature is that most
domains of interest focus on image classification and anal-
ysis problems. However, other important domains, such as
natural language processing, audio and video systems, and
biosignal analysis, deserve more attention.

Finally, we conclude that many of the aspects analyzed in
the current state of the art cover concerns related to privacy
and the use of advanced technologies for data analysis.
These studies offer a broader view of the existing gaps
in the literature, allowing for the identification of future
perspectives and challenges that are still open.
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TABLE 14: State-of-the-Art Approaches, Metrics, and Scenarios.
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Itahara, Sohei, et al. [18] 2021 Aggregation with
entropy reduction

IoT, FL and
non-iid

MNIST, Fashion-
MNIST, IMDb,
Reuters

Accuracy,
Communication
Cost

Robustness
against attacks
and noise

Loss of Accuracy

Criado, Marcos F, et al.
[10]

2022 Continual Learn-
ing

IoT, FL and
non-iid

MNIST, SVHN,
USPS, Office-31,
Bing-Caltech256,
COREL5000

Accuracy Adapts to data dis-
tribution changes

Labeled data as-
sumptions

Al-Saedi, et al. [38] 2022 Round-wise Clus-
tering

Communication
Efficiency

MNIST, Fashion
MNIST, Fashion-
MNIST, CIFAR-
10

Accuracy Reduces Commu-
nication, dynamic
partitioning

Complex dynamic
clusters

Yu, Xi, et al. [20] 2022 Dynamic Regular-
ization

Multiple Clients MNIST, Fashion-
MNIST

Accuracy,
Precision, Recall,
AUC

Adaptive learning,
resource-efficient

Instability near
convergence

Ullah, Shan, et al. [47] 2022 Local Parameter
Optimization

Image Classifica-
tion

CIFAR-10 Accuracy Improves
efficiency and
performance

Dependency on
FedAVG

Xu, Jian, et al. [46] 2022 Custom Classifier Heterogeneous
Data

Fashion-MNIST,
CIFAR-10

Accuracy Handles data
variations, reduces
Communication

Risk of overfit-
ting with insuffi-
cient local data

Li, Yang, et al. [56] 2022 Disturbed entropy Agricultural pest
recognition

Agricultural pest
images

Accuracy Reduces
redundancy in
datasets

Restricted to
multi-class
classification

Wolfrath, Joel, et al. [55] 2022 Client Clustering Mobile, IoT De-
vices

Fashion-MNIST,
CIFAR-10

Time-to-accuracy,
model accuracy.

Faster
convergence,
efficient training

Dependence
on stable
distributions

Tu, Chengwu et al. [21] 2023 Node selection IoT, FL and
non-iid

MNIST, CIFAR-
10

Accuracy,
Communication
Rounds

Fewer rounds,
Global Accuracy

Poorly representa-
tive data

Li, Boyuan et al. [41] 2023 Knowledge-based
dynamics

IoT, FL and
non-iid

MNIST, Fashion-
MNIST, CIFAR-
10

Convergence, Ac-
curacy

Better
convergence
and Accuracy

Complexity with
diverse data

Yang, Wei-Jong et al.
[44]

2023 Dynamic weights IoT, FL and
non-iid

MNIST, Fashion-
MNIST, CIFAR-
10

Global Accuracy,
Communication
Rounds

Less communi-
cation, dynamic
adaptation

Additional
processing for
weights

Chen, Huancheng et al.
[19]

2023 Feature extraction IoT, FL and
non-iid

CIFAR-10,
CIFAR-100,
SVHN

Local Accuracy,
global Accuracy

Robustness for
heterogeneous
data

Dependency on
hyper-knowledge

Zheng, Shu et al. [23] 2023 Client sampling IoT, FL and
non-iid

MNIST, Fashion-
MNIST, CIFAR-
10, CIFAR-100

Accuracy Reflects global
distribution

Quadratic compu-
tational complex-
ity

Huang, Chenxi et al.
[48]

2023 Global memory
vectors

Heterogeneous
devices

CIFAR-100 Weighted
Accuracy, rounds-
Accuracy

Reduces variance Initial setup com-
putations

Orlandi, Fernanda C. et
al. [39]

2023 Entropy for Non-
IID Data Mitiga-
tion

IoT Devices MNIST, CIFAR-
10

Accuracy, execu-
tion time

Mitigates impacts
of non-IID data,
lower power con-
sumption

slight reduction in
accuracy

Qiao, Yu et al. [49] 2023 Prototype regular-
ization

Image
classification

MNIST, Fashion-
MNIST

Average
Accuracy,
Communication
Efficiency

Fast convergence
in non-iid scenar-
ios

Prototype compu-
tation per round

Wu, Chenrui et al. [58] 2023 Prototypes and
dynamic pseudo-
labeling

Noisy data, imbal-
anced classes

CIFAR-10,
CIFAR-100,
Clothing1M

Accuracy,
Precision, Recall

Stabilizes accurate
pseudo-labeling

Computational
cost

Sun, Qiheng et al. [24] 2023 Client
contributions

Malicious clients,
healthcare

CIFAR-10,
Fashion-MNIST,
Fed-ISIC2019

Accuracy, Conver-
gence Rate

Robustness
against poisoning
attacks

Intensive compu-
tations, high com-
putational cost

Milan Ilić et al. [51] 2023 Model updates Medicine, IoT, FL
and non-iid

Fashion-MNIST,
LEAF, Adult
Income, Body
Signal of Smoking

F1-Score, Mean
Absolute Error
(MAE)

Flexible across
multiple
domains/tasks

Competing strate-
gies with inferior
performance

Condori Bustincio, et al.
[25]

2023 Adaptive selection
by entropy

Heterogeneity,
communication
overhead

CIFAR-10 Accuracy,
Communication
Cost

Reduces commu-
nication overhead

Limited
generalization
on datasets

Zhang, Yu, et al. [35] 2023 Differential evolu-
tion by entropy

Protein structure
prediction

25PDB, FC699,
D1189, D640

Accuracy, TPR,
TNR, F1-Score

Robustness in fea-
ture selection

High complexity,
requires fine-
tuning

Hamidi, Shayan Moha-
jer, et al. [61]

2024 Entropy in loss
function

Medical diagnosis CIFAR-10,
CIFAR-100,
TinyImageNet

Accuracy,
Standard
Deviation

Better Accuracy
on unbalanced
datasets

Increased
complexity

Yan, Litao, et al. [60] 2024 Entropy
production model

Wireless commu-
nication

Physical and
mathematical
simulations

Entropy rate,
Communication
Cost

Optimized alloca-
tion, parallel pro-
cessing

Complexity in
modeling
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