Utilize este identificador para referenciar este registo: http://hdl.handle.net/10071/34676
Registo completo
Campo DCValorIdioma
dc.contributor.authorNeto, E. G. V.-
dc.contributor.authorPeixoto Jr., S. A.-
dc.contributor.authorLeithardt, V. R. Q.-
dc.contributor.authorSantana, J. F. P.-
dc.contributor.authorAnjos, J. C. S. dos.-
dc.date.accessioned2025-06-17T09:05:28Z-
dc.date.available2025-06-17T09:05:28Z-
dc.date.issued2025-
dc.identifier.citationNeto, E. G. V., Peixoto Jr., S. A., Leithardt, V. R. Q., Santana, J. F. P., & Anjos, J. C. S. dos. (2025). Adding data quality to federated learning performance improvement. IEEE Access. https://doi.org/10.1109/ACCESS.2025.3578301-
dc.identifier.issn2169-3536-
dc.identifier.urihttp://hdl.handle.net/10071/34676-
dc.description.abstractMassive data generation from Internet of Things (IoT) devices increases the demand for efficient data analysis to extract meaningful insights. Federated Learning (FL) allows IoT devices to collaborate in AI training models while preserving data privacy. However, selecting high-quality data for training remains a critical challenge in FL environments with non-independent and identically distributed (non-iid) data. Poor-quality data introduces errors, delays convergence, and increases computational costs. This study develops a data quality analysis algorithm for FL and centralized environments to address these challenges. The proposed algorithm reduces computational costs, eliminates unnecessary data processing, and accelerates AI model convergence. The experiments used the MNIST, Fashion-MNIST, CIFAR-10, and CIFAR-100 datasets, and performance evaluation was based on main literature metrics like accuracy, recall, F1 score, and precision. Results show the best case execution time reductions of up to 56.49%, with an accuracy loss of around 0.50%.eng
dc.language.isoeng-
dc.publisherIEEE-
dc.relation2020/09706-7-
dc.relation001-
dc.relation406517/2022-3-
dc.relationinfo:eu-repo/grantAgreement/FCT/Concurso de avaliação no âmbito do Programa Plurianual de Financiamento de Unidades de I&D (2017%2F2018) - Financiamento Programático/UIDP%2F04466%2F2020/PT-
dc.relationinfo:eu-repo/grantAgreement/FCT/Concurso de avaliação no âmbito do Programa Plurianual de Financiamento de Unidades de I&D (2017%2F2018) - Financiamento Base/UIDB%2F04466%2F2020/PT-
dc.rightsopenAccess-
dc.subjectData qualityeng
dc.subjectDeep learningeng
dc.subjectFederated learningeng
dc.subjectIoTeng
dc.subjectIIDeng
dc.subjectNon-IIDeng
dc.titleAdding data quality to federated learning performance improvementeng
dc.typearticle-
dc.peerreviewedyes-
dc.volumeN/A-
dc.date.updated2025-06-16T10:08:10Z-
dc.description.versioninfo:eu-repo/semantics/publishedVersion-
dc.identifier.doi10.1109/ACCESS.2025.3578301-
dc.subject.fosDomínio/Área Científica::Ciências Naturais::Ciências da Computação e da Informaçãopor
dc.subject.fosDomínio/Área Científica::Engenharia e Tecnologia::Engenharia Eletrotécnica, Eletrónica e Informáticapor
iscte.subject.odsEducação de qualidadepor
iscte.subject.odsIndústria, inovação e infraestruturaspor
iscte.identifier.cienciahttps://ciencia.iscte-iul.pt/id/ci-pub-111690-
iscte.journalIEEE Access-
Aparece nas coleções:ISTAR-RI - Artigos em revistas científicas internacionais com arbitragem científica

Ficheiros deste registo:
Ficheiro TamanhoFormato 
article_111690.pdf7,8 MBAdobe PDFVer/Abrir


FacebookTwitterDeliciousLinkedInDiggGoogle BookmarksMySpaceOrkut
Formato BibTex mendeley Endnote Logotipo do DeGóis Logotipo do Orcid 

Todos os registos no repositório estão protegidos por leis de copyright, com todos os direitos reservados.