Utilize este identificador para referenciar este registo: http://hdl.handle.net/10071/32864
Autoria: Elvas, L. B.
Nunes, M.
Ferreira, J. C.
Dias, M. S.
Rosário, L. B.
Data: 2023
Título próprio: AI-driven decision support for early detection of cardiac events: Unveiling patterns and predicting myocardial ischemia
Título da revista: Journal of Personalized Medicine
Volume: 13
Número: 9
Referência bibliográfica: Elvas, L. B., Nunes, M., Ferreira, J. C., Dias, M. S., & Rosário, L. B. (2023). AI-driven decision support for early detection of cardiac events: Unveiling patterns and predicting myocardial ischemia. Journal of Personalized Medicine, 13(9), Article 1421. https://doi.org/10.3390/jpm13091421
ISSN: 2075-4426
DOI (Digital Object Identifier): 10.3390/jpm13091421
Palavras-chave: Cardiovascular diseases
Myocardial infarction
Pulmonary thromboembolism
Aortic stenosis
Stenosis cardiology
Exploratory data analysis
Artificial intelligence
Machine learning
Data mining
Prediction
Resumo: Cardiovascular diseases (CVDs) account for a significant portion of global mortality, emphasizing the need for effective strategies. This study focuses on myocardial infarction, pulmonary thromboembolism, and aortic stenosis, aiming to empower medical practitioners with tools for informed decision making and timely interventions. Drawing from data at Hospital Santa Maria, our approach combines exploratory data analysis (EDA) and predictive machine learning (ML) models, guided by the Cross-Industry Standard Process for Data Mining (CRISP-DM) methodology. EDA reveals intricate patterns and relationships specific to cardiovascular diseases. ML models achieve accuracies above 80%, providing a 13 min window to predict myocardial ischemia incidents and intervene proactively. This paper presents a Proof of Concept for real-time data and predictive capabilities in enhancing medical strategies.
Arbitragem científica: yes
Acesso: Acesso Aberto
Aparece nas coleções:ISTAR-RI - Artigos em revistas científicas internacionais com arbitragem científica

Ficheiros deste registo:
Ficheiro TamanhoFormato 
article_100452.pdf13,69 MBAdobe PDFVer/Abrir


FacebookTwitterDeliciousLinkedInDiggGoogle BookmarksMySpaceOrkut
Formato BibTex mendeley Endnote Logotipo do DeGóis Logotipo do Orcid 

Todos os registos no repositório estão protegidos por leis de copyright, com todos os direitos reservados.