Utilize este identificador para referenciar este registo:
http://hdl.handle.net/10071/32864
Autoria: | Elvas, L. B. Nunes, M. Ferreira, J. C. Dias, M. S. Rosário, L. B. |
Data: | 2023 |
Título próprio: | AI-driven decision support for early detection of cardiac events: Unveiling patterns and predicting myocardial ischemia |
Título da revista: | Journal of Personalized Medicine |
Volume: | 13 |
Número: | 9 |
Referência bibliográfica: | Elvas, L. B., Nunes, M., Ferreira, J. C., Dias, M. S., & Rosário, L. B. (2023). AI-driven decision support for early detection of cardiac events: Unveiling patterns and predicting myocardial ischemia. Journal of Personalized Medicine, 13(9), Article 1421. https://doi.org/10.3390/jpm13091421 |
ISSN: | 2075-4426 |
DOI (Digital Object Identifier): | 10.3390/jpm13091421 |
Palavras-chave: | Cardiovascular diseases Myocardial infarction Pulmonary thromboembolism Aortic stenosis Stenosis cardiology Exploratory data analysis Artificial intelligence Machine learning Data mining Prediction |
Resumo: | Cardiovascular diseases (CVDs) account for a significant portion of global mortality, emphasizing the need for effective strategies. This study focuses on myocardial infarction, pulmonary thromboembolism, and aortic stenosis, aiming to empower medical practitioners with tools for informed decision making and timely interventions. Drawing from data at Hospital Santa Maria, our approach combines exploratory data analysis (EDA) and predictive machine learning (ML) models, guided by the Cross-Industry Standard Process for Data Mining (CRISP-DM) methodology. EDA reveals intricate patterns and relationships specific to cardiovascular diseases. ML models achieve accuracies above 80%, providing a 13 min window to predict myocardial ischemia incidents and intervene proactively. This paper presents a Proof of Concept for real-time data and predictive capabilities in enhancing medical strategies. |
Arbitragem científica: | yes |
Acesso: | Acesso Aberto |
Aparece nas coleções: | ISTAR-RI - Artigos em revistas científicas internacionais com arbitragem científica |
Ficheiros deste registo:
Ficheiro | Tamanho | Formato | |
---|---|---|---|
article_100452.pdf | 13,69 MB | Adobe PDF | Ver/Abrir |
Todos os registos no repositório estão protegidos por leis de copyright, com todos os direitos reservados.