Please use this identifier to cite or link to this item: http://hdl.handle.net/10071/32864
Author(s): Elvas, L. B.
Nunes, M.
Ferreira, J. C.
Dias, M. S.
Rosário, L. B.
Date: 2023
Title: AI-driven decision support for early detection of cardiac events: Unveiling patterns and predicting myocardial ischemia
Journal title: Journal of Personalized Medicine
Volume: 13
Number: 9
Reference: Elvas, L. B., Nunes, M., Ferreira, J. C., Dias, M. S., & Rosário, L. B. (2023). AI-driven decision support for early detection of cardiac events: Unveiling patterns and predicting myocardial ischemia. Journal of Personalized Medicine, 13(9), Article 1421. https://doi.org/10.3390/jpm13091421
ISSN: 2075-4426
DOI (Digital Object Identifier): 10.3390/jpm13091421
Keywords: Cardiovascular diseases
Myocardial infarction
Pulmonary thromboembolism
Aortic stenosis
Stenosis cardiology
Exploratory data analysis
Artificial intelligence
Machine learning
Data mining
Prediction
Abstract: Cardiovascular diseases (CVDs) account for a significant portion of global mortality, emphasizing the need for effective strategies. This study focuses on myocardial infarction, pulmonary thromboembolism, and aortic stenosis, aiming to empower medical practitioners with tools for informed decision making and timely interventions. Drawing from data at Hospital Santa Maria, our approach combines exploratory data analysis (EDA) and predictive machine learning (ML) models, guided by the Cross-Industry Standard Process for Data Mining (CRISP-DM) methodology. EDA reveals intricate patterns and relationships specific to cardiovascular diseases. ML models achieve accuracies above 80%, providing a 13 min window to predict myocardial ischemia incidents and intervene proactively. This paper presents a Proof of Concept for real-time data and predictive capabilities in enhancing medical strategies.
Peerreviewed: yes
Access type: Open Access
Appears in Collections:ISTAR-RI - Artigos em revistas científicas internacionais com arbitragem científica

Files in This Item:
File SizeFormat 
article_100452.pdf13,69 MBAdobe PDFView/Open


FacebookTwitterDeliciousLinkedInDiggGoogle BookmarksMySpaceOrkut
Formato BibTex mendeley Endnote Logotipo do DeGóis Logotipo do Orcid 

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.