Utilize este identificador para referenciar este registo: http://hdl.handle.net/10071/32864
Registo completo
Campo DCValorIdioma
dc.contributor.authorElvas, L. B.-
dc.contributor.authorNunes, M.-
dc.contributor.authorFerreira, J. C.-
dc.contributor.authorDias, M. S.-
dc.contributor.authorRosário, L. B.-
dc.date.accessioned2025-01-02T15:18:19Z-
dc.date.available2025-01-02T15:18:19Z-
dc.date.issued2023-
dc.identifier.citationElvas, L. B., Nunes, M., Ferreira, J. C., Dias, M. S., & Rosário, L. B. (2023). AI-driven decision support for early detection of cardiac events: Unveiling patterns and predicting myocardial ischemia. Journal of Personalized Medicine, 13(9), Article 1421. https://doi.org/10.3390/jpm13091421-
dc.identifier.issn2075-4426-
dc.identifier.urihttp://hdl.handle.net/10071/32864-
dc.description.abstractCardiovascular diseases (CVDs) account for a significant portion of global mortality, emphasizing the need for effective strategies. This study focuses on myocardial infarction, pulmonary thromboembolism, and aortic stenosis, aiming to empower medical practitioners with tools for informed decision making and timely interventions. Drawing from data at Hospital Santa Maria, our approach combines exploratory data analysis (EDA) and predictive machine learning (ML) models, guided by the Cross-Industry Standard Process for Data Mining (CRISP-DM) methodology. EDA reveals intricate patterns and relationships specific to cardiovascular diseases. ML models achieve accuracies above 80%, providing a 13 min window to predict myocardial ischemia incidents and intervene proactively. This paper presents a Proof of Concept for real-time data and predictive capabilities in enhancing medical strategies.eng
dc.language.isoeng-
dc.publisherMDPI-
dc.relationinfo:eu-repo/grantAgreement/FCT/6817 - DCRRNI ID/UIDB%2F04466%2F2020/PT-
dc.relationinfo:eu-repo/grantAgreement/FCT//UI%2FBD%2F151494%2F2021/PT-
dc.relation101083048-
dc.relationinfo:eu-repo/grantAgreement/FCT/3599-PPCDT/DSAIPA%2FAI%2F0122%2F2020/PT-
dc.rightsopenAccess-
dc.subjectCardiovascular diseaseseng
dc.subjectMyocardial infarctioneng
dc.subjectPulmonary thromboembolismeng
dc.subjectAortic stenosiseng
dc.subjectStenosis cardiologyeng
dc.subjectExploratory data analysiseng
dc.subjectArtificial intelligenceeng
dc.subjectMachine learningeng
dc.subjectData miningeng
dc.subjectPredictioneng
dc.titleAI-driven decision support for early detection of cardiac events: Unveiling patterns and predicting myocardial ischemiaeng
dc.typearticle-
dc.peerreviewedyes-
dc.volume13-
dc.number9-
dc.date.updated2025-01-02T15:16:24Z-
dc.description.versioninfo:eu-repo/semantics/publishedVersion-
dc.identifier.doi10.3390/jpm13091421-
dc.subject.fosDomínio/Área Científica::Ciências Médicas::Medicina Clínicapor
dc.subject.fosDomínio/Área Científica::Ciências Médicas::Ciências da Saúdepor
dc.subject.fosDomínio/Área Científica::Ciências Médicas::Outras Ciências Médicaspor
iscte.identifier.cienciahttps://ciencia.iscte-iul.pt/id/ci-pub-100452-
iscte.alternateIdentifiers.wosWOS:WOS:001078515800001-
iscte.alternateIdentifiers.scopus2-s2.0-85172920493-
iscte.journalJournal of Personalized Medicine-
Aparece nas coleções:ISTAR-RI - Artigos em revistas científicas internacionais com arbitragem científica

Ficheiros deste registo:
Ficheiro TamanhoFormato 
article_100452.pdf13,69 MBAdobe PDFVer/Abrir


FacebookTwitterDeliciousLinkedInDiggGoogle BookmarksMySpaceOrkut
Formato BibTex mendeley Endnote Logotipo do DeGóis Logotipo do Orcid 

Todos os registos no repositório estão protegidos por leis de copyright, com todos os direitos reservados.