Please use this identifier to cite or link to this item:
http://hdl.handle.net/10071/33993
Author(s): | Stefenon, S. F. Seman, L. O. Yamaguchi, C. K. Coelho, L. dos S. Mariani, V. C. Matos-Carvalho, J. P. Leithardt, V. R. Q. |
Date: | 2025 |
Title: | Neural hierarchical interpolation time series for reservoir level multi-horizon forecasting in hydroelectric power plants |
Journal title: | IEEE Access |
Volume: | 13 |
Pages: | 54853 - 54865 |
Reference: | Stefenon, S. F., Seman, L. O., Yamaguchi, C. K., Coelho, L. dos S., Mariani, V. C., Matos-Carvalho, J. P., & Leithardt, V. R. Q. (2025). Neural hierarchical interpolation time series for reservoir level multi-horizon forecasting in hydroelectric power plants. IEEE Access, 13, 54853-54865. https://doi.org/10.1109/ACCESS.2025.3554446 |
ISSN: | 2169-3536 |
DOI (Digital Object Identifier): | 10.1109/ACCESS.2025.3554446 |
Keywords: | Energy planning Hydroelectric power plants Neural hierarchical interpolation Time series forecasting |
Abstract: | Energy planning in systems heavily influenced by hydroelectric power is based on assessing the availability of water in the future. In Brazil, based on the soil moisture active passive, the National Electricity System Operator defines electricity dispatch concerning a stochastic optimization problem. Currently, machine learning models are an alternative for improving forecasts, and could be a promising solution for predicting reservoir levels at hydroelectric dams. In this paper, neural hierarchical interpolation for time series (NHITS) is applied to improve forecasts and thus help decision-making in the management of electric power systems. The NHITS model achieved a root mean square error of 4.64×10−4 for a 1-hour forecast horizon, and 1.03×10−3 for a 10-hour forecast horizon, being superior to multilayer perceptron (MLP) neural network, long short-term memory (LSTM), convolutional neural network with long shortterm memory (CNN-LSTM), recurrent neural network (RNN), Dilated RNN, temporal convolutional neural (TCN), neural basis expansion analysis for interpretable time series forecasting (N-BEATS), and deep nonparametric time series forecaster (DeepNPTS) deep learning approaches. |
Peerreviewed: | yes |
Access type: | Open Access |
Appears in Collections: | ISTAR-RI - Artigos em revistas científicas internacionais com arbitragem científica |
Files in This Item:
File | Size | Format | |
---|---|---|---|
article_110195.pdf | 1,48 MB | Adobe PDF | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.