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ABSTRACT Energy planning in systems heavily influenced by hydroelectric power is based on assessing the
availability of water in the future. In Brazil, based on the soil moisture active passive, the National Electricity
System Operator defines electricity dispatch concerning a stochastic optimization problem. Currently,
machine learning models are an alternative for improving forecasts, and could be a promising solution for
predicting reservoir levels at hydroelectric dams. In this paper, neural hierarchical interpolation for time
series (NHITS) is applied to improve forecasts and thus help decision-making in the management of electric
power systems. The NHITS model achieved a root mean square error of 4.64×10−4 for a 1-hour forecast
horizon, and 1.03×10−3 for a 10-hour forecast horizon, being superior tomultilayer perceptron (MLP) neural
network, long short-term memory (LSTM), convolutional neural network with long short-term memory
(CNN-LSTM), recurrent neural network (RNN), Dilated RNN, temporal convolutional neural (TCN), neural
basis expansion analysis for interpretable time series forecasting (N-BEATS), and deep non-parametric time
series forecaster (DeepNPTS) deep learning approaches.

INDEX TERMS Energy planning, hydroelectric power plants, neural hierarchical interpolation, time series
forecasting.

The associate editor coordinating the review of this manuscript and

approving it for publication was Binit Lukose .

I. INTRODUCTION
In some countries the planning of the dispatch of the
electricity generation system is based on the evaluation of a
stochastic optimization problem [1] that considers the level
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of the reservoirs and rainfall forecasts that consequently
increase the level of the hydroelectric dams [2]. Currently,
the Brazilian energy planning is carried out based on the soil
moisture accounting procedure (SMAP) model [3].
The SMAP is a physical model that is based on catego-

rizing the flow of surface and subsurface runoff [4]. The
national system operator receives the dam level data and
information from SMAP to define each plant’s dispatch, thus
guaranteeing future energy security and the lowest cost based
on the use of hydro resources [5]. With the advances in
research on machine learning (ML) models, it is promising to
evaluate their potential application regarding reservoir level
forecasting [6].
Every day more applications of innovative methods are

being presented [7], [8], [9], [10], [11], [12], [13]. Proposals
of hybrid ML methods are emerging to be applied to time
series forecasting. Ensemble learning approaches combine
several weak learners to generate a more powerful forecasting
model [14], and the application of deep learning (DL)
strategies show promise [15]. Therefore, there is a trade-off
between the need to process non-linear features and the
computational effort required to carry out this task to improve
the model’s performance [16].

An approach gaining prominence is applying filters to
reduce non-linearities in time series [17]. High frequencies
often do not represent the trend variation of the signal, which
is why there are methods that apply filters to reduce noise,
resulting in a more linear time series, in which the prediction
model can achieve better performance [18].
Among the most common denoising techniques for time

series, stand out the wavelet transform [19], variational
mode decomposition methods, Christiano-Fitzgerald random
walk filter [20], seasonal-trend decomposition using locally
estimated scatterplot smoothing [21], and seasonal decom-
position using moving averages [22]. The use of filters is
indicated when the time series has high frequencies that
do not correspond to the trend of variation. When the
signal does not have these features, it is not worth it to
apply denoising techniques because the signal can lose its
fundamental characteristics, this is the case with the signal
evaluated in this paper.

Several ML approaches have been applied for time series
forecasting, resulting in a challenging task in the model
definition. The multilayer perceptron (MLP) neural network,
long short-term memory (LSTM) [23], recurrent neural
network (RNN) [24], Dilated RNN [25], temporal convolu-
tional neural (TCN) [26], neural basis expansion analysis for
interpretable time series forecasting (N-BEATS) [27], and
deep non-parametric time series forecaster (DeepNPTS) [28]
are examples of promising strategies in this regard.

Since energy planning is directly related to the level of
power plant dams [29], this paper proposes to use a neural
hierarchical interpolation for time series (NHITS) to forecast
the reservoir levels of hydroelectric power plants supporting
the decision-making concerning electricity management in a

matrix that has a strong presence of hydroelectric plants. The
multi-horizon term is evaluated to present a complete analysis
of the possibilities of forecasting.

The level variation of the dams is especially important
to forecast in the southern region, considering the history
of floods faced in this region due to abrupt variations in
the level of the river caused by a large amount of rainfall
in a short period [30]. Based on this challenge, the NHITS
model is applied to predict water variation at the BarraGrande
hydroelectric power plant in Santa Catarina, Brazil.

This paper has the following contributions:
• Improving dam level forecasting can improve the
management of the electricity system by providing more
accurate information for decision-making regarding the
dispatch of hydroelectric plants.

• The NHITS model is stable when various experiments
are carried out, maintaining low variability. The results
showed that the NHITS is promising for multi-horizon
forecasting being generalized to other tasks.

• TheNHITS outperforms theMLP, LSTM,RNN,Dilated
RNN, TCN, N-BEATS, and DeepNPTS approaches, for
very short-term (VST) and short-term (ST) forecasting.

The remainder of this article is organized as follows: In
Section II related works focused on time series forecasting
in hydroelectric power plants are presented. In Section III
the problem description that gives the motivation of the
application covered here and the considered dataset are
described. In Section IV the NHITS architecture is explained,
and the setup for comparison is detailed. In Section V the
results are presented and finally in Sections VI a conclusion
and future work direction is drawn.

II. RELATED WORKS
Significant development has been made in applying ML and
DL methods in reservoir inflow and streamflow forecasting.
These methods often improve predictive accuracy over
traditional statistical approaches.

Herbert et al. [31] introduced a multi-step forecasting
approach utilizing an Encoder-Decoder algorithm, compar-
ing the performance of LSTM and convolutional neural
network (CNN) models. Their study focused on improving
long-term forecasting accuracy for reservoir inflows, demon-
strating that the LSTM encoder-decoder model achieved
superior results to traditional statistical and process-based
models.

Latif et al. [32] examined the performance of DLmodels in
the context of daily reservoir inflow forecasting. Their study,
conducted on the Durian Tunggal Reservoir, showed that
LSTMmodels performed better than classical ML techniques
such as support vector machines (SVM) and artificial neural
networks (ANNs), as evidenced by higher coefficient of
determination values and lower error metrics like mean
absolute error (MAE) and root mean square error (RMSE).

Recent research has also explored hybrid modeling
approaches. Khorram et al. [33] developed a model that
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combines LSTM and CNN for reservoir inflow forecasting.
The hybrid CNN-LSTMwas shown to have higher predictive
accuracy than several other models, including SVM, adaptive
neuro-fuzzy inference system (ANFIS), and autoregressive
integrated moving average (ARIMA), suggesting its effec-
tiveness in capturing the nonlinearities present in inflow data.

Sushanth et al. [34] investigated the integration of high spa-
tial resolution weather forecasts with ML models, employing
explainable ML techniques to enhance real-time inflow
forecasting. Their work on the Tenughat catchment indicated
that an LSTM model, when combined with bias-corrected
Global Forecasting System data, could provide accurate
predictions up to three days in advance, illustrating the
potential of combining weather forecasts withMLmodels for
real-time forecasting applications.

In the area of long-term streamflow forecasting,
Vatanchi et al. [35] analyzed the effectiveness of several DL
models, including ANFIS, ANN, bidirectional LSTM (BiL-
STM), and a hybrid CNN-GRU-LSTM model, in predicting
daily streamflow for the Colorado River, where GRU is the
gated recurrent unit (GRU). Their findings suggested that
the ANFIS model had superior performance in terms of
metrics such as normalized RMSE, MAE, and Nash-Sutcliffe
efficiency coefficient, indicating that traditional models
may still have advantages in certain long-term forecasting
scenarios.

Additional studies have further explored the application
of DL models in streamflow prediction. Ayana et al. [36]
conducted monthly streamflow predictions using various
ML and DL techniques, including linear regression, support
vector regression, random forest, and bidirectional GRU
(BiGRU)models. Their results showed that the BiGRUmodel
outperformed both ML algorithms and other DL models.

Xu et al. [37] examined the effects of spatial and
temporal scale on predictive performance when using a
hybrid CNN-GRU model for monthly streamflow prediction
across watersheds with varying hydroclimatic characteristics.
Their results indicated that the model performed better in
larger drainage areas and highlighted the importance of
extended training periods for improving predictive accuracy.

Khullar et al. [38] addressed the challenge of water
quality forecasting using a BiLSTM model, finding that
it outperformed traditional ML models in predicting water
quality factors in the Yamuna River, India. This study
emphasizes the potential application of DL techniques in
ecological and water resource management.

In daily streamflow forecasting, Rahimzad et al. [39]
compared the accuracy of various ML models, including
LSTM, MLP, SVM, and linear regression, within the Ken-
tucky River basin. Their findings supported using the LSTM
model as a reliable tool for capturing time series behaviors in
hydrological modeling. Hybridmodels are increasingly being
used to improve prediction performance [40].
Sahoo et al. [41] focused on low-flow time series

forecasting using LSTM-RNN, demonstrating that this model
outperformed traditional RNN and naïve methods, making

LSTM-RNN a reliable artificial intelligence (AI) technique
for streamflow forecasting, particularly in low-flow scenar-
ios. Rajesh et al. [42] presented a framework combining
multiple ML algorithms for short-range reservoir inflow
forecasting, including LSTM, random forest, and gradient
boosting approach. Their ensemble approach resulted in
improved predictive performance and reduced uncertainty,
particularly for tropical reservoirs.

Li et al. [43] explored the application of deep feature
learning architectures, such as deep restricted Boltzmann
machines and stacked autoencoders, for daily reservoir inflow
forecasting. Their results showed that these deep neural
networks provided better predictive performance compared
to traditional models like feedforward neural networks and
ARIMA, highlighting the potential of DL in handling large
datasets and complex feature extraction.

Dharpure et al. [44] investigated the use of various ML
models, including BiLSTM, for daily streamflow forecasting
in the western Himalayas. Their study showed that the
BiLSTMmodel achieved higher accuracy in capturing hydro-
logical variability in glacierized catchments, suggesting its
applicability in regions with complex hydrological regimes.

Shekar et al. [45] conducted a comparative analysis of
LSTM and several AI models for rainfall-runoff modeling
in the Murredu River basin. Their findings indicated that
the LSTM model performed exceptionally well during
both calibration and validation periods, demonstrating its
effectiveness in accurately modeling the rainfall-runoff
relationship in watershed management.

LSTM models are frequently noted for their strong per-
formance across diverse hydrological settings, often outper-
forming traditional approaches. Hybrid models, particularly
those integrating weather forecasts, have shown potential in
improving predictive accuracy, though traditional methods
like ANFIS remain relevant in some long-term scenarios.
The research highlights the importance of model selection
based on specific forecasting needs and suggests that
combining different methodologies can effectively address
the complexities of hydrological forecasting [5].

Everything considered, there is a wide application of
ML and DL techniques in reservoir inflow and streamflow
forecasting, with an increasing trend toward more complex
and hybrid models incorporating various data sources. In this
context, several authors have carried out studies on inflow,
while specific analyses of the reservoir level as carried out
in [46] are rarer. Based on this need, this paper presents an
analysis of dam-level multi-horizon forecasting.

III. PROBLEM DESCRIPTION
The dispatch of the electrical power systems in Brazil is
considering a stochastic optimization that considers the level
of water in the hydroelectric power plants and the weather
forecasting to estimate the future level of the dams in these
power plants [47]. Given the advances in ML for time series
forecasting, the NHITS model presented in this paper could
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be used to give additional information regarding available
water in a hydroelectric-based power system. Additionally,
especially in southern Brazil floods are a concern since the
cities are usually close to the rivers, and abrupt variation in
river levels is a problem that needs attention [48]. Given an
ML-based model, the forecasting in dams in hydroelectric
power plants could help to highlight emergencies, which
would improve flood management.

The operators monitor the increase in dam levels hourly
via the power plant’s control system. This information is
passed on to the national system operator, which defines the
operating strategies for the electrical power system, thereby
being responsible for assessing the best use of the water
resource, ensuring the security of the energy supply, and the
lowest future price of electricity.

A further consideration regarding the assessment of dam
levels is the flooding that occurs in their surroundings due to
abrupt variations in rainfall. These concerns are taken into
account when the plant’s operating strategies are defined.
For this reason, predicting the dam’s level can help plan its
use. Based on these needs, this paper evaluates the prediction
of the water volume in the dam to support decision-making
regarding the use of the water resource [6].

A. DATASET
This paper considers the Barra Grande Hydroelectric Power
Plant, located on the Pelotas River, about 43 kilometers
from its confluence with the Canoas River, between Anita
Garibaldi/SC and Pinhal da Serra/RSmunicipalities. The dam
is 185 meters high and 665 meters long. This structure forms
the reservoir that covers an area of 90 square kilometers [49].

The considered time series is measured at one-hour
intervals during a 31-day month (July 2020), corresponding
to 744 records. This level variation as a percentage of
the usable volume for generating electricity is presented in
Figure 1.

FIGURE 1. Useful level of the power plant over time.

The data under consideration is from measurements of this
plant’s automatic hydraulic control system during a flood
event, in which, in less than a month, the dam’s water level
rose from 20.46% to 86.27%. This highlights how the river
level can be variable, showing that there is a need for an

accurate prediction model to have an adequate strategy for
better use of the water and reducing the impact of floods. For
a fair prediction evaluation, the observed dam level measure
is normalized using the following equations:

µ =
1
n

n∑
i=1

yi (1)

σ =

√√√√1
n

n∑
i=1

(yi − µ)2 (2)

y =
y − µ

σ
(3)

where µ is the mean of the considered values, σ is the
standard deviation, n is the number of i samples, and y is the
normalized values used for network training and testing.

IV. METHODOLOGY
The interpolation of time series data has a long history,
with methods ranging from simple linear and polynomial
techniques to more sophisticated spline and kernel-based
methods [50]. Recently, ML approaches, particularly DL
models like RNNs and transformers, have demonstrated
superior performance in capturing the intricate patterns
in time series data [51]. ML and DL models could be
an alternative for improving water level forecasting in
hydroelectric plants.

A. WATER LEVEL IN HYDROELECTRIC PLANTS
The operation of a hydroelectric plant typically follows
the daily electro-energetic program, which the operation
programming division of the National Electric System Oper-
ator issues [52]. This program includes updates or changes
to operational restrictions for national energy generation
and transmission facilities, daily load forecasts, automatic
generation control programming, and reservoir operation
conditions forecasts [53], which is the main focus of this
paper.

The water level control of the hydroelectric plant relies
on the difference in water flow at the dam. This is determined
by the accumulated flow (FAcc), which is the difference
between the inflow (FAff ) and the outflow (FDef ), expressed
as:

FAcc(t) = FAff (t) − FDef (t). (4)

When the inflow (FAff ) exceeds the outflow (FDef ), the
water level of the dam rises. The outflow (FDef ) results in
downstream flow (FDow), which is the sum of the turbine flow
(FTur ) and the spilled flow (FSpi), given by:

FDow(t) = FTur (t) + FSpi(t). (5)

The waterfall (FWat ) determines when the plant can turbine
water and then generate energy [54]. This takes into account
that the upstream flow (FUps) is related to the inflow (FAff ).
Therefore, the waterfall is calculated according to:

FWat (t) = FUps(t) − FDow(t). (6)
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There is currently a discussion about how hydroelectric
dams can help control floods, observing the power plants’
operation conditions [46], which have a major impact in
Brazil. Models that help predict the rise in dam levels can also
provide important information to help the teams that work on
the mitigation of the effects of floods on the people who live
near the rivers.

Selecting the appropriate method to perform water level
prediction can be challenging, given that several models have
shown satisfactory results in time series forecasting [55].
Typically, ML and DL models often focus on a single level
of data granularity, which can limit their ability to generalize
across different temporal scales [56]. The NHITS method
builds upon these needs by incorporating a hierarchical
modeling framework, which enables simultaneous learning
of global and local temporal patterns.

B. NEURAL HIERARCHICAL INTERPOLATION
Long-horizon forecasting poses significant challenges due
to prediction volatility and computational complexity.
To address these issues, the neural hierarchical interpolation
for time series (NHITS) was proposed by Challu et al. [57].
The architecture of the NHITSmodel is presented in Figure 2.
The predictions of the different levels are combined to

generate a final model prediction, and the model error is
calculated as the difference between the combined stacked
prediction value and the observed value.

NHITS builds on the N-BEATS model and enhances its
performance by specializing in partial outputs for different
time series frequencies through hierarchical interpolation and
multi-rate input processing [27].

In the NHITS, multi-rate processing narrows the MLP
input width for most blocks. This reduction decreases
the memory footprint, lowers computational requirements,
and minimizes the number of learnable parameters, thus
mitigating overfitting while preserving the original receptive
field. Given the block ℓ of the input yt−L:t,ℓ, the operation can
be formalized as follows:

y(p)t−L:t,ℓ = MaxPool(yt−L:t,ℓ, kℓ) (7)

where yt−L:t is the overall network input, kℓ is the pooling
kernel size, and L are the lags. For the first block input ℓ = 1;
yt−L:t,1 ≡ yt−L:t [57].

The block ℓ examines its input and applies nonlinear
regression to compute the forward interpolation coefficients
θ
f
ℓ and the backward interpolation coefficients θbℓ . This
process involves learning the hidden vector hℓ ∈ RNh ,
linearly projected according to:

hℓ = MLPℓ(y
(p)
t−L:t,ℓ)

θ
f
ℓ = LINEARf (hℓ)

θbℓ = LINEARb(hℓ). (8)

The coefficients are then used to generate the backcast
output ỹt−L:t,ℓ and the forecast output ŷt+1:t+H ,ℓ of the block.

According to Perera et al. [58], the effectiveness of fore-
casting approaches is influenced by both the resolution and
the horizon of the task, being a challenge to evaluate multi-
horizon forecasting. In several multi-horizon forecasting
approaches, the model’s number of predictions equals the
horizon’s dimensionality H .

In transformers, the decoder attention layer cross-
correlates the horizon output embeddings with encoded
input embeddings [59]. This results in a rapid increase
in computational effort and an unneeded expansion of the
model’s complexity with higher horizons. The temporal
interpolation was proposed in [57] to solve this issue.
To restore the original sampling rate and forecast all points
in the considered horizon, the interpolation function (g) is
applied, where:

ŷτ,ℓ = g(τ, θ fℓ ), ∀τ ∈ {t + 1, . . . , t + H},

ỹτ,ℓ = g(τ, θbℓ ), ∀τ ∈ {t − L, . . . , t}. (9)

The linear interpolator g ∈ C1 with the time partition,

T = {t + 1, t + 1 + 1/rℓ, . . . , t + H − 1/rℓ, t + H} (10)

is

g(τ, θ) = θ[t1] +

(
θ [t2]−θ [t1]
t2−t1

)
(τ − t1) (11)

where

t1 = arg mint∈T :t≤τ (τ − t), t2 = t1 + 1/rℓ. (12)

The hierarchical interpolation operates by allocating
expressiveness ratios across blocks in sync with multi-rate
sampling. Blocks nearer to the input feature smaller rℓ
and larger kℓ, meaning they produce low-granularity signals
through more aggressive interpolation. These input blocks
also need to consider more sub-sampled signals. The final
hierarchical forecast ŷt+1:t+H is constructed by aggregating
the outputs of all blocks, effectively combining interpolations
from various levels of the time-scale hierarchy [57].

ŷt+1:t+H =

L∑
l=1

ŷt+1:t+H ,ℓ (13)

yt−L:t,ℓ+1 = yt−L:t,ℓ − ỹt−L:t,ℓ (14)

The backcast residue generated in the prior hierarchy is
removed from the input of the following hierarchy level.
This increases the focus of the next level’s block on out-of-
band signals that the members of the previous hierarchy have
already processed.

In other words, hierarchical interpolation enhances time
series forecasting by decomposing the input data into
components of varying frequencies and scales, allowing
for more accurate and efficient predictions. In NHITS, the
model processes the input time series through multiple
layers, each designed to capture different aspects of the
data. Initially, the model applies multi-rate signal sampling,
where the input is downsampled at various rates to focus
on different frequency components. Subsequently, each
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FIGURE 2. Architecture of NHITS.

layer performs nonlinear regression to predict forward and
backward interpolation coefficients. These coefficients are
then used in the hierarchical interpolation step to reconstruct
the time series at different scales, effectively capturing
both short-term fluctuations and long-term trends. The final
forecast is assembled by combining the outputs from all
layers, resulting in a comprehensive prediction that accounts
for various temporal patterns [57].
According to Mancuso et al. [60], when handling hierar-

chical time series, it is essential to generate accurate forecasts
and choose an appropriate method for generating reconciled
forecasts. This involves adjusting forecasts to ensure they are
consistent across the hierarchy.

C. EVALUATION METRICS
The evaluation measures considered in this paper were
RMSE, root mean squared percentage error (RMSPE), MAE,
and median absolute error (MedAE). These measures are
from the statsmodels library, specifically available in
statsmodels.tools.eval_measures library.1

1https://www.statsmodels.org/dev/_modules/statsmodels/tools/eval_
measures.html

RMSE is a measure of the differences between values
predicted by a model and the values observed [61]. The
RMSE is defined as follows [62]:

RMSE =

√√√√1
n

n∑
i=1

(
yi − ŷi

)2 (15)

where n is the number of observations, yi is the observed value
for the i-th observation, and ŷi is the predicted value for the
i-th observation.

RMSPE is a measure of the relative differences between
predicted and observed values, expressed as a percentage.
It is particularly useful when you want to understand the
prediction error relative to the magnitude of the observed
values [63]. The RMSPE is calculated by,

RMSPE =

√√√√1
n

n∑
i=1

(
yi − ŷi
yi

)2

. (16)

MAE measures the average magnitude of errors between
predicted values and actual values, given by:

MAE =
1
n

n∑
i=1

|yi − ŷi| (17)
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MAE provides an intuitive measure to determine which
model has lower average errors, thereby identifying the
better-performing model [64]. MedAE is used to evaluate
the performance of forecasting models by measuring the
median of the absolute differences between the observed and
predicted values, given by:

MedAE = median|yi − ŷi| (18)

considering the absolute error |yi − ŷi| equal x, the median of
x is calculated according:

median(x) =


x[
n+ 1
2

] if n is odd

x[
n
2
] + x[

n
2

+ 1]

2
if n is even.

(19)

MedAE is applied when the data set is expected to contain
outliers [65]. Since the median is not affected by extreme
values, it provides amore reliable estimate of the typical error.

D. EXPERIMENT SETUP
Python is the language chosen to write the NHITS algorithm.
To compute the experiments, the back-end of Google com-
pute engine (Colab) was used, using a graphics processing
unit NVIDIA Tesla T4 with 15 GB of random-access
memory.

To evaluate the stability of the model, after fine-tuning,
the mean, median, mode, range, variance, standard deviation
(std. dev.), 25th percentile (%ile), 50th %ile, 75th %ile,
interquartile range (IQR), skewness, and kurtosis are ana-
lyzed considering 50 runs with random seed.

For a comparative analysis, the MLP, LSTM [23], CNN-
LSTM [66], RNN [24], Dilated RNN [25], TCN [26],
N-BEATS [67], and DeepNPTS [28], are compared to the
NHITS. These models use the default settings from the
nixtla repository [68].

V. RESULTS AND DISCUSSIONS
To achieve a promising result in time series forecasting, it is
necessary to evaluate the model’s parameters in such a way
as to make the best use of its potential. The best results of the
comparative analysis presented in this section are highlighted
in bold. Considering that the number of steps the model
considers to perform the forecast makes a difference to the
performance results, Table 1 shows an evaluation considering
the variation of an acceptable maximum number of steps.

The best result was achieved using 2,500 steps as the
maximum for prediction. A limit value greater than 5,000
steps results in an increase in the complexity of the calculation
without improving performance, which is why this value was
set as the limit in this evaluation. It should be noted that the
number of steps is directly related to the characteristics of
the signal since there is a difference in the application when
considering long or short-term signals.

To better assess the influence of using the signal for
prediction, Table 2 shows the prediction error results

TABLE 1. Evaluation of the maximum number of steps.

TABLE 2. Analysis of the use of different input sizes.

FIGURE 3. Comparison of the observed (y) to the prediction values using
a horizon equal to the size of the test dataset.

considering the change in input size. This evaluation took into
account the maximum number of 2,500 steps.

The best result when evaluating the use of input data was
with an input size of 200. Based on these preliminary results,
Figure 3 shows the NHITS prediction values compared to the
original signal, considering 90% of the data used for training
and 10% for testing the model.

Multi-horizon forecasting is a significant challenge, as the
longer the horizon, the more difficult the prediction becomes.
This can be seen in Figure 3, as the last forecast values
were higher than the observed values, showing that the
longer the prediction horizon, the more difficult it is for
the model to predict the value with the lowest error.
Specifically for this challenge, an analysis is carried out
concerning the variation of the horizon and the use of the
data set, the results of which are presented in the next
subsection.
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TABLE 3. Analysis of the use of different input sizes.

FIGURE 4. Comparison of the observed value to the prediction values
using a 10-hour horizon.

A. MULTI-HORIZON ANALYSIS
For action to control the dam, a one-step-ahead prediction
would be enough to alert the teams in an emergency [46].
However, a prediction using a longer horizon can improve the
ability to manage the problem, so there is a trade-off between
a longer prediction horizon and an acceptable error. Table 3
presents this evaluation.

The results show that the longer the horizon, the greater the
prediction error. If it were defined that the entire test set would
be predicted, as some authors have done, a greater error would
be achieved by using less data to train the model and more
data for testing. However, the worst results were achieved
when the horizon increased, which is unrelated to the dataset
split. This indicates that the model struggles to predict long
time series.

Considering the RMSE, when horizons greater than
10 hours were evaluated, errors greater than 10−2 were
achieved. A horizon equal to 10 hours was considered an
adequate horizon since 10 hours ahead would be sufficient
to take the necessary measures to control the power plant

TABLE 4. Statistical assessment results.

since the monitoring is based on an hourly measurement. The
prediction result for this horizon is shown in Figure 4.

Comparing the data split for this evaluation, the best result
was achieved using 70% of the data for training and 30% of
the data for validation, resulting in an RMSE of 4.64×10−4

for a 1-hour forecast horizon, and 1.03×10−3 for a 10-hour
forecast horizon. Since not all the models converged when
using one step ahead, this configuration was not used in
further analysis.

The comparative analyses considered 90% of the data for
training, 10% for testing the network, and 50 maximum steps
for all models.

To make it clearer what influence the variation in horizons
has on the model’s results, Figure 5 shows a comparison
between different forecast horizons, with a specific model
trained for each horizon.

The forecasting results show that the model has difficulty
making predictions with a horizon greater than 10 steps
ahead. This result is to be expected, since the longer the
forecast horizon, the more difficult it becomes for the model
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FIGURE 5. Comparison of the observed value to the prediction values using a 10-hour horizon.

TABLE 5. Comparative analysis of DL models.

to forecast correctly. Considering that the electricity system is
planned on an hourly basis, the model meets the need, using
a forecast horizon of one step ahead.

The statistical assessment is presented in Section V-B
and the benchmarking is presented in Section V-C. In the
comparative analysis between the models, two horizons are
considered: VST with a 5-hour-ahead forecast and ST with a
20-hour-ahead forecast.

B. STATISTICAL ASSESSMENT
The statistical analysis presented in Table 4 takes into account
the model settings discussed in previous sections. Based
on the adjusted model, 50 experiments are carried out with
different initializations of the network (seed).

The model’s standard deviation of 8.76×10−4 for the
RMSE shows that the model has low variability, making it
promising for the application evaluated here. The variation
values (range) of the results concerning the mean are high
but acceptable considering the signal’s non-linearities.

The results of this analysis show that the model is stable
because even when several simulations are carried out with
different initializations, the model returns values within the
acceptable range. This is confirmed for all the error metrics
evaluated in this paper.

C. BENCHMARKING
The comparative analysis presented here aims to compare
state-of-the-art models for time series forecasting to the
model adopted in this paper. Table 5 shows the results of this
evaluation.

The defaults defined in [68] were the remaining settings
used. The time presented in this analysis is the sum of the
training time and the testing time of the network.

The results showed that even the fitted NHITS out-
performed other well-established time series forecasting
models evaluated here, across both evaluation horizons. The
N-BEATS model, which is from the same family as the
NHITS, achieves the second-best result. Although the tuned
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NHITS model takes longer to be processed, it still has an
acceptable training time, since the decision-making is based
on an hourly variation.

In this study, the best setup configuration for the model was
using an input size equal to 200, a learning rate of 1×10−3,
and batch size equal to 8, using a student’s t-distribution
loss. The use of the largest input size or different learning
rate imparts the model performance during training. The use
of other batch sizes did not have a major influence on the
performance of the model, therefore a lower batch size was
used to avoid overloading the graphics processing unit.

The attempt to use other loss functions resulted in
the model not converging. The main hyperparameter that
improved the model’s performance was the input size
adjustment, which is directly related to the characteristics of
the data to be used and is therefore a hyperparameter that
should always be evaluated.

The hardware configurations that resulted in the processing
times presented in Table 5 are described in Section IV-D.
Considering that the shortest horizon analyzed in this paper
is one hour, a processing time of less than this period is
sufficient to meet the requirements of the problem, therefore
all the models had acceptable processing times.

In [3] the SMAP is compared to a proposed hypertuned
wavelet CNN-LSTM. Given an RMSE of 8.72×102 of their
proposed method in comparison to the SMAP that had an
RMSE of 2.24×103, they proved that hybrid DL methods
are promising for time series forecasting in hydroelectric
power plants. Our method proved to have better results than
CNN-LSTM and considering that the evaluated signal has
less presence of high frequencies, the method presented in
this paper is the better alternative since no denoising is
needed.

VI. FINAL REMARKS
Thanks to advances in ML, time series forecasting is
becoming increasingly useful to support decision-making
in hydroelectric power plants. In particular, the proposed
model has shown promise for predicting the reservoir level of
hydroelectric power plants and can even be applied to other
tasks.

The NHITS outperformed all other compared models for
VST and ST forecasting. Tuning the NHITS results in even
better results with an RMSE of 1.39×10−3 for a 5-hour-
ahead forecast and 4.72×10−3 for a 20-hour-ahead forecast.
The second-best model was the N-BEATS which is from the
same family as NHITS, highlighting the power of this class
of algorithm for time series forecasting.

Several models had lower performance for in very
short-term forecasting when compared to their results for
short-term forecasting, although this is not a rule for all
approaches, it can be seen that forecasting more long-range
horizons can be a challenge for multi-step ahead forecasting
models.

Future work can be done analyzing signals with greater
non-linearity, such as the inflow from hydroelectric plants.

In this case, filters to attenuate the variation are promising
so that the focus of the application can be on predicting the
trend.

Another approach that can be used in future works is the
multi-criteria optimization of the model’s hyperparameters.
Tree-structured Parzen estimator-based frameworks are cur-
rently being used to ensure that the best architecture setup is
considered.
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