Utilize este identificador para referenciar este registo:
http://hdl.handle.net/10071/35319
Autoria: | Oliva, R. Oliveira, A. P. Barros, J. |
Data: | 2025 |
Título próprio: | Modeling localized social vulnerability through probabilistic simulation: A case study in the Lisbon metropolitan area |
Título da revista: | International Journal of Disaster Risk Reduction |
Volume: | 129 |
Referência bibliográfica: | Oliva, R., Oliveira, A. P., & Barros, J. (2025). Modeling localized social vulnerability through probabilistic simulation: A case study in the Lisbon metropolitan area. International Journal of Disaster Risk Reduction, 129, Article 105792. https://doi.org/10.1016/j.ijdrr.2025.105792 |
ISSN: | 2212-4209 |
DOI (Digital Object Identifier): | 10.1016/j.ijdrr.2025.105792 |
Palavras-chave: | Social vulnerability index Urban resilience Risk assessment Lisbon metropolitan area Disaster preparedness Community vulnerability |
Resumo: | Urban communities are increasingly vulnerable to social and environmental risks, necessitating robust tools for assessing and addressing these vulnerabilities. This study develops a localized Social Vulnerability Index (locSVI) model using an established framework and applies it to two Portuguese case studies: Bairro Encosta da Luz and the parish of Santiago, both situated in the Lisbon Metropolitan Area. The model integrates ten macro variables and context-specific weightings derived from resident survey data, supported by Monte Carlo simulations to validate and explore sensitivity in the results. Findings indicate that both communities fall into the “Very High” risk category, with key drivers including high population density, limited disaster preparedness, and in the case of Santiago, inadequate land use practices. The study highlights both the value and limitations of using composite indices for localized vulnerability assessment, emphasizing the need for community-based, data-driven interventions. Recommendations include enhancing civil protection mechanisms, improving land use planning, and promoting neighborhood cohesion. Despite methodological constraints related to sample size and data granularity, this work provides a scalable framework for guiding urban resilience strategies in similar contexts. |
Arbitragem científica: | yes |
Acesso: | Acesso Embargado |
Aparece nas coleções: | ISTAR-RI - Artigos em revistas científicas internacionais com arbitragem científica |
Ficheiros deste registo:
Ficheiro | Tamanho | Formato | |
---|---|---|---|
article_113020.pdf Restricted Access | 790,63 kB | Adobe PDF | Ver/Abrir Request a copy |
Todos os registos no repositório estão protegidos por leis de copyright, com todos os direitos reservados.