Utilize este identificador para referenciar este registo: http://hdl.handle.net/10071/34453
Registo completo
Campo DCValorIdioma
dc.contributor.authorMarques, L.-
dc.contributor.authorMoro, S.-
dc.contributor.authorRamos, P.-
dc.date.accessioned2025-05-15T15:23:30Z-
dc.date.available2025-05-15T15:23:30Z-
dc.date.issued9999-
dc.identifier.citationMarques, L., Moro, S. & Ramos, P. (2025). Data-driven insights to reduce uncertainty from disruptive events in passenger railways. Public Transport. https://doi.org/10.1007/s12469-024-00380-9-
dc.identifier.issn1866-749X-
dc.identifier.urihttp://hdl.handle.net/10071/34453-
dc.description.abstractThis study investigates the predictive modeling of the impact of disruptive events on passenger railway systems, using real data from the Portuguese main operator, Comboios de Portugal. We develop models using neural networks and decision trees, using key features such as the betweenness centrality indicator, railway track, time of day, and the train service group. Conclusively, these attributes significantly predict the impact on the proposed models. The research reveals the superior performance of neural network models, such as convolutional neural networks and recurrent neural networks, in smaller data sets, while decision tree models, particularly random forest, stand out in larger data sets. The findings of this study unveil new attributes that can be employed as predictors. Additionally, they confirm, within this study's context, the effectiveness of certain traits previously recognized in the literature for mitigating the uncertainty associated with the uncertainty of the impact of disruptive events in passenger railway systems.eng
dc.language.isoeng-
dc.publisherSpringer-
dc.relationUIDB/04466/2020-
dc.relationUIDP/04466/2020-
dc.rightsopenAccess-
dc.subjectDisruptive Eventseng
dc.subjectRailway Systemseng
dc.subjectNeural Networkseng
dc.subjectDecision treeeng
dc.titleData-driven insights to reduce uncertainty from disruptive events in passenger railwayseng
dc.typearticle-
dc.peerreviewedyes-
dc.volumeN/A-
dc.date.updated2025-05-15T16:21:55Z-
dc.description.versioninfo:eu-repo/semantics/publishedVersion-
dc.identifier.doi10.1007/s12469-024-00380-9-
dc.subject.fosDomínio/Área Científica::Ciências Naturais::Ciências da Computação e da Informaçãopor
dc.subject.fosDomínio/Área Científica::Ciências Sociais::Economia e Gestãopor
iscte.subject.odsIndústria, inovação e infraestruturaspor
iscte.subject.odsCidades e comunidades sustentáveispor
iscte.identifier.cienciahttps://ciencia.iscte-iul.pt/id/ci-pub-106583-
iscte.journalPublic Transport-
Aparece nas coleções:ISTAR-RI - Artigos em revistas científicas internacionais com arbitragem científica

Ficheiros deste registo:
Ficheiro TamanhoFormato 
article_106583.pdf1,43 MBAdobe PDFVer/Abrir


FacebookTwitterDeliciousLinkedInDiggGoogle BookmarksMySpaceOrkut
Formato BibTex mendeley Endnote Logotipo do DeGóis Logotipo do Orcid 

Todos os registos no repositório estão protegidos por leis de copyright, com todos os direitos reservados.