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Abstract
This study investigates the predictive modeling of the impact of disruptive events 
on passenger railway systems, using real data from the Portuguese main operator, 
Comboios de Portugal. We develop models using neural networks and decision 
trees, using key features such as the betweenness centrality indicator, railway track, 
time of day, and the train service group. Conclusively, these attributes significantly 
predict the impact on the proposed models. The research reveals the superior perfor-
mance of neural network models, such as convolutional neural networks and recur-
rent neural networks in smaller datasets, while decision tree models, particularly 
random forest, stand out in larger datasets. The findings of this study unveil new 
attributes that can be employed as predictors. Additionally, they confirm, within this 
study’s context, the effectiveness of certain traits previously recognized in the litera-
ture for mitigating the uncertainty associated with the uncertainty of the impact of 
disruptive events in passenger railway systems.

Keywords  Disruptive events · Railway systems · Neural networks · Decision tree

1  Introduction

In passenger railway transportation systems, the occurrence of disruptive events 
poses a significant challenge, affecting punctuality, train regularity, and the overall 
passenger experience (Bešinović 2020). During disruptions in railway operations, 
the service offering can be affected by a reduction in available seats or a modification 
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in train quality. Generally, available seats may be reduced due to insufficient com-
mercial supply or the substitution of rolling stock with an inferior category. These 
measures aim to maintain service viability and customer satisfaction during disrup-
tions. Train suppression is a drastic measure involving the withdrawal of services 
in response to technical issues, adverse weather conditions, or extraordinary events. 
Occasional suppressions also regulate schedules. During disruptions, it may be nec-
essary to introduce additional trains outside the regular schedule to meet unexpected 
demand or to reroute rolling stock. Train delays are common during disruptions and 
can result from technical failures, weather conditions, or congestion. Punctuality is 
essential for passenger satisfaction, and managing delays involves quickly resolving 
problems and efficiently communicating with passengers (König 2020; Tiong et al. 
2023).

Railway networks are exposed to various types of disturbances on a daily basis. 
Minor railway system disturbances can be managed by modifying train schedules 
without altering the tasks of rolling stock and crews. On the other hand, disrup-
tions are relatively large incidents that require changes in both the train schedules 
and the tasks of the rolling stock and crews. These disruptions can be caused by 
a variety of human or equipment-related failures (rolling stock or infrastructure), 
leading to inconvenience for passengers and inefficiency in the railway system. 
In addition to the consequence of constraining passengers’ journeys, disturbances 
cause significant financial losses (Huang et al. 2020). In rail operations, disruptive 
events can be classified into two main types: minor disturbances and major disrup-
tions. Minor disturbances are short-term events that cause small interruptions to the 
normal operation of the rail system, such as delays in passenger boarding, minor 
technical issues, or brief weather interruptions, and can be managed with very little 
adjustments to schedules and resource allocations. Major disruptions, on the other 
hand, are long-term events that require extensive rescheduling, caused by internal 
factors such as critical failures in tracks or rolling stock, and external factors such as 
extreme weather conditions or accidents. These require substantial changes in opera-
tional plans and coordinated efforts to minimize impacts (Nielsen et al. 2012). Ge 
et al. (2022) propose a comprehensive classification of disruptions in transportation 
systems, categorizing them across various dimensions. Disruptions can be planned, 
such as maintenance, or unplanned, like delays and terrorist attacks. The probabil-
ity of occurrence includes frequent events, such as demand fluctuations, and rare 
events, like volcanic eruptions. Impacts can vary widely in magnitude, ranging from 
minor occurrences such as limited access due to escalator malfunctions, to large-
scale impacts like terrorist attacks that have serious implications for the continuity 
of railway service provision. Occurrences can be anticipated before the trip or dur-
ing, with durations that may be short or long. Causes can be natural, like floods, 
or human-made, such as illegal track occupation. The scope varies from local to 
regional or global, and the location can be internal or external.

Reducing the uncertainty regarding the impact on the operational circulation of 
disruptive events in passenger rail transport is one of the daily goals of passenger 
rail transport companies (Ghaemi et al. 2018). Due to the characteristics of this type 
of transportation and its constant exposure to various points of failure, including the 
impact of weather conditions, operationality of infrastructure and rolling stock, as 
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well as the - sometimes - irregular behavior of passengers (Artan and Sahin 2022), 
the railway system is highly interconnected in its operation. This means that a disrup-
tive event in one train can impact others, as the use of infrastructure is competitive, 
and the effects of disruptive events can have a sequential impact dynamic (Sajan and 
Kumar 2021). Inherent to this type of transport are disruptive events that can result 
in train cancellations, significant operational delays, and even accidents with mate-
rial and human damage (Huang et al. 2020). Railway research literature demonstrates 
significant results in predicting and analyzing delays and interruptions. The study by 
Fabella and Szymczak (2021) revealed a considerable impact of natural disasters, 
such as floods and landslides, on the German railway network. Grandhi et al. (2021) 
showed that neural networks are more effective in predicting delays in the Danish 
Railway, indicating the crucial role of weather and specific attributes of disruptive 
events. Chen et al. (2022) found that factors such as time of day and weather condi-
tions significantly affect delays in the Hong Kong Mass Transit Railway. Huang et al. 
(2020) achieved 96.6% accuracy in predicting delays using a hybrid model based on 
Bayesian networks in China. Golightly and Dadashi (2017) identified 26 relevant 
attributes for railway transportation interruptions through interviews with operational 
personnel in Great Britain. Boateng and Yang (2023) and Gao et al. (2023) imple-
mented advanced machine learning techniques, such as XGBoost and deep neural 
networks, significantly improving accuracy in predicting delays.

In the railway context, the clear distinction between passenger operators and traf-
fic controllers is an area requiring further investigation, as indicated by Spanninger 
et al. (2022). The interests of passenger operators do not always align with those of 
traffic controllers, who focus on the availability of infrastructure for train circula-
tion. Operators, on the other hand, must ensure that passengers reach their destina-
tions and that rolling stock and crews are appropriately positioned to meet schedules 
(Wang and Zhang 2019). This study exclusively focuses on attributes pertinent to 
passenger operators, omitting aspects of infrastructure management, such as plat-
form use and single-track crossings. We did not identify models in the literature that 
differentiate operators and infrastructure managers with the same focus and objec-
tives as this study, which prioritizes the specific needs of passenger railway opera-
tors (Leng and Weidmann 2017).

This study stands out for its innovative and comprehensive approach, integrating 
a wide range of attributes that provide a robust analysis of the impact of disrup-
tive events on the railway. The originality of the work is evidenced by the introduc-
tion of new predictive variables not previously used in studies. It provides a detailed 
comparison of different evaluation methods, offering valuable insights to reduce the 
uncertainty of disruptive events on the railway. The article aims to contribute to the 
investigation of the impact of these events, focusing on the perspective of passenger 
rail operators, particularly regarding their operations. The main objectives and con-
tributions of this research are:

•	 Identify the attributes that best explain the impact of disruptive events.
•	 Propose a model for predicting the total number of trains affected in a disruptive 

event.
•	 Propose a model for predicting the total delay of trains.
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•	 Propose a model for predicting the total number of passengers affected.

In this investigation, data from the railway operator CP—Comboios de Portugal 
were used. The dataset spans from 2015 to 2022. We utilized operational data from 
the operator, including occurrences, delays, infrastructure characteristics, and cli-
matic data collected from the Visual Crossing weather platform. CP is a public com-
pany controlled by the Portuguese State and is the largest passenger railway opera-
tor in Portugal, covering a significant portion of the mainland territory. It operates 
urban services in the main cities of Portugal as well as regional and long-distance 
services.

This article is structured as follows. In Sect.  2, we conduct a literature review. 
Section  3 describes the methodology, including a comprehensive analysis of the 
methodology, the used models, and the description of the data. Section 4 addresses 
data processing, including the management of extreme values and dimensionality 
reduction, and presents the used datasets. In Sect. 5, we discuss the obtained results, 
interpreting them and relating them to the existing literature, as well as acknowledg-
ing the limitations of the study. Finally, Sect. 6 concludes the article and suggests 
directions for future research.

2 � Literature review

We conducted a literature review using the Web of Science and Scopus databases, 
focusing on academic articles and journals published in English with no restrictions 
regarding the publication date. The aim of this review was to identify methodologies 
that can be integrated to enhance the resilience and efficiency of railway operations 
in the face of adverse impacts, providing valuable insights for improving disruption 
management in the railway transportation sector. Initially, we performed the search 
using specific terms in the title, abstract, and keyword fields. In the Web of Sci-
ence, the terms "disruption," "duration prediction," and "disruption management" 
combined with "railway" resulted in 545, 1, and 57 articles, respectively. In Sco-
pus, the same terms returned 609, 1, and 58 articles. These results indicate a greater 
number of studies on Scopus concerning the topic, particularly regarding "railway 
disruptions" and "disruption management." To ensure the relevance of the selected 
articles, we applied elimination criteria in two stages. In the first stage, we excluded 
articles published in conference proceedings, those focused on railway infrastruc-
ture management, or those exclusively dedicated to infrastructure exploration with-
out considering the impact on operations. After thoroughly reading the remaining 
articles, we applied additional elimination criteria, discarding studies that addressed 
planned disruptions (such as infrastructure improvement works), those that focused 
on socioeconomic analyses, and articles that did not have as their main objective 
the prediction of impacts on passenger railway operations. Following these rigor-
ous filtering and selection stages, we identified 15 relevant articles to include in the 
literature review. These articles were analyzed to explore how different methodolo-
gies can be combined to strengthen operational resilience and improve disruption 
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management, contributing to a more efficient and proactive management of railway 
operations.

Fabella and Szymczak (2021) investigated the vulnerability of the German rail-
way network to disasters such as floods, landslides, forest fires, and fallen trees. 
They used count data regression models, including negative binomial regression, 
combining daily rail traffic data with geospatial information on disruptive events. 
They concluded that floods significantly reduce the number of trains in operation, 
highlighting the need for more comprehensive data to analyze multiple simultaneous 
events.

Several studies have utilized machine learning models to predict rail delays. 
Grandhi et al. (2021) used neural networks to predict the duration and total delays of 
incidents on the Danish railway. They identified weather as a critical factor, though 
they faced challenges related to the accuracy of manually input data. Similarly, 
Yaghini et al. (2013) applied an artificial neural network model to predict delays in 
passenger trains on Iranian railways, using three different approaches for input defi-
nition: normalized real number, binary encoding, and binary encoding set. While the 
model demonstrated high accuracy, it requires large volumes of data.

Huang et  al. (2020) developed a Bayesian network-based model to predict the 
effects of rail disruptions in China, focusing on delay propagation, the number of 
affected trains, and delay time. Although the model achieved high accuracy, it faced 
difficulties due to complexity and the need for specialized knowledge. Klumpenhou-
wer and Shalaby (2022) applied machine learning techniques, such as random for-
est regression and elastic net, to improve rail operations in the GO Rail network in 
Ontario. The models were effective in predicting delays, but had limitations in mod-
eling delay propagation. The authors considered that expanding the dataset could 
mitigate some of these limitations.

In another group of studies, regression techniques were used to analyze rail 
delays. Chen et al. (2022) analyzed delays on Hong Kong’s Mass Transit Railway 
caused by unplanned disruptions using quantile regression models. The results indi-
cated that factors such as time of day and weather conditions were significant, but 
the study lacked information on procedures during disruptions and infrastructure 
data. Wang and Zhang (2019) used a boosting regression tree model to predict pas-
senger train delay times in China, considering factors like weather conditions, the 
number of trains passing through each station, and delay history. The results showed 
that traffic volume and train conditions significantly impact delays and that these 
delays propagate to subsequent trains.

Some researchers have developed hybrid approaches and utilized advanced tech-
niques to improve delay prediction. Boateng and Yang (2023) proposed a pruned 
ensemble learning approach (PST-NN) to predict passenger train delays in the USA, 
combining multiple deep learning sub-models (ANN, DNN, and CNN) and using 
meta-learning (MLP) to improve prediction accuracy. The magnitude-based prun-
ing technique was applied to reduce model complexity and increase computational 
efficiency. The results showed that PST-NN significantly outperformed benchmark 
models in terms of accuracy and prediction error, demonstrating an improvement of 
up to 85.22% over existing models.
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Gao et  al. (2023) proposed an advanced model for predicting high-speed train 
delays in China, using the XGBoost algorithm combined with meta-heuristic algo-
rithms for hyperparameter optimization. Based on a dataset of 1.9 million records 
over 38  months, including arrival and departure times, dispatch commands, and 
delay propagation information, the methodology demonstrates that dispatch com-
mands and spatiotemporal relationships are crucial for prediction accuracy. The 
optimized model achieved an root mean square error (RMSE) of 2.56 min, an mean 
absolute error (MAE) of 1.78 min, and an R2 of 0.87. However, it faces limitations 
due to computational complexity, reliance on high-quality historical data, and chal-
lenges in generalizing to other railway networks. Su et al. (2022) presented a hybrid 
methodology combining variational mode decomposition (VMD) with neural net-
works (MLP, GRU, and Bi-LSTM) to predict passenger flow in high-speed railways 
in China. Using historical data from the Guangzhou–Zhuhai track, the methodology 
decomposed the time series into stable subsequences processed by neural networks, 
showing that hybrid models are more accurate than individual models.

Nabian et al. (2019) proposed a two-level random forest approach to predict pas-
senger train delays in the Netherlands, comparing it with several other techniques, 
such as gradient boosting, Adaboost, SVM, extra tree, logistic regression, decision 
tree, KNN, and naive Bayes. The study used data including scheduled times, his-
torical train performance, crew schedules, rolling stock circulation, infrastructure 
data, and weather conditions, analyzing approximately 10 million data points over 
13 weeks. Golightly and Dadashi (2017) identified characteristics of rail disruptions 
in Great Britain, revealing differences between events that stop and delay traffic, but 
with a focus solely on the British context, limiting its international applicability.

Marković et  al. (2015) and Li et  al. (2021) explored support vector regression 
(SVR) and artificial neural network (ANN) models to predict passenger train delays 
in Serbia and the Netherlands, respectively. Marković et  al. (2015) analyzed data 
from 727 trains, considering variables such as train category, scheduled arrival time, 
infrastructure, distance, travel time, and intervals between trains. They concluded 
that SVR outperforms ANN in predictive accuracy and generalization, highlighting 
infrastructure as a critical factor in delays. Li et al. (2021) used the random forest 
(RF) model to predict delays in the Dutch railway network, analyzing historical rail 
operation data collected between September and December 2017, including sched-
uled and actual times, crew changes, rolling stock circulation, and weather condi-
tions. The RF model was optimized and compared with other algorithms, such as 
ANN, XGBoost, and gradient boosted decision trees (GBDT), showing high accu-
racy but highlighting limitations due to dependence on specific historical data.

Li et  al. (2020) used XGBoost and SVR to predict high-speed train delays in 
China, using data from the Wuhan–Guangzhou track. XGBoost achieved an MAE 
of 0.57 for the number of affected trains, while SVR achieved an MAE of 4.45 min 
for total delay time. However, the dependence on specific historical data may limit 
the generalization of the models to other tracks, and the absence of exogenous fac-
tors, such as weather conditions, may affect accuracy in complex situations. A litera-
ture review reveals that studies on predictive modeling of delays in railway systems 
use various approaches, such as machine learning, Bayesian networks, and quantile 
regression. Machine learning models, like neural networks and random forests, are 
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widely used due to their ability to handle large volumes of data and the complexity 
of delays. However, many studies face limitations related to data quality and com-
prehensiveness, the need for specialized knowledge for complex modeling, and dif-
ficulties in generalizing models to different geographical and operational contexts. 
Additionally, integrating exogenous variables, such as weather conditions and dis-
patch commands, is frequently highlighted as crucial for improving predictive accu-
racy but presents significant computational challenges.

The present study aims to overcome the limitations identified in the existing lit-
erature by addressing the need for more comprehensive data and automated data 
collection methods to enhance model reliability. By incorporating an extensive and 
diverse dataset spanning from 2015 to 2022, the research enables a robust analysis 
of simultaneous events in different contexts. The inclusion of additional variables, 
such as infrastructure and weather conditions, improves model generalization and 
the understanding of the factors causing delays. The research tests models in vari-
ous railway contexts, increasing the robustness and applicability of predictions. Fur-
thermore, the integration of detailed incident logs and the consideration of delay 
propagation within the network enhance predictive accuracy and the management 
of rare events. Advanced data preprocessing techniques and feature selection are 
employed to efficiently handle large volumes of data, improving model performance 
and interpretability.

3 � Methodology

3.1 � Comprehensive methodology analysis

The utilization of CRISP-DM (cross-industry standard process for data mining) in 
this study on predictive modeling of the impact of disruptive events on passenger 
railway systems is justified by its robust and flexible structure, covering all critical 
stages of the project. Beginning with business and data understanding, the modeling 
phase allows testing and optimizing different algorithms, such as neural networks 
and decision trees, while the evaluation phase ensures that the chosen models are 
rigorously validated. The final implementation phase facilitates the integration of 
the models into the operations of Comboios de Portugal, ensuring a practical and 
continuous application. This proven methodology provides a systematic and itera-
tive approach, crucial for dealing with the complexity and variability of the real data 
used in the study, ensuring robust and applicable results (Martinez-Plumed et  al. 
2021).

Figure 1 illustrates the six phases of CRISP-DM, which are detailed below:

1.	 Business understanding: Recognizing the challenges faced by the railway and 
public transportation sectors, particularly due to disruptive events. The goal is 
to develop predictive models to mitigate these impacts, enhancing the resilience 
and robustness of the railway system operated by Comboios de Portugal (CP). It 
is essential to create models that predict and manage the impacts of disruptions 
more accurately.
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2.	 Data understanding: Real data provided by CP includes information on railway 
infrastructure, train schedules, records of disruptive events, and operational data. 
Climatic data were collected from the Visual Crossing platform. Exploratory anal-
ysis involved identifying and analyzing key characteristics, such as the between-
ness centrality indicator, railway tracks, time of day, and train service group, to 
understand their relevance and impact on railway operations.

3.	 Data preparation: Data cleaning involved the removal of inconsistent, missing, 
or duplicate data to ensure the quality and accuracy of the model inputs. Tech-
niques such as the removal of outliers using the interquartile range (IQR) and 
standard deviation (SD) were employed to handle extreme values. Data transfor-
mation included converting data into a suitable format for modeling, including 
normalization and encoding of categorical variables. Feature engineering was 
applied to create new characteristics, such as centrality metrics, that enhance the 
performance of predictive models. Techniques like the Chi-square test, LASSO, 
and recursive feature elimination (RFE) were used for dimensionality reduction 
and selection of the most relevant characteristics (Acito 2023).

4.	 Modeling: Multilayer perceptron (MLP) networks are particularly effective in 
modeling complex non-linear relationships, such as those between variables like 
the number of daily passengers, train intervals, the average daily number of trains, 
the number of trains affected by delays, total minutes of delay, and the number 
of affected passengers. These networks can capture complex patterns and subtle 
interactions between input and output variables, making them suitable for non-
linear predictions. Convolutional neural networks (CNNs), although traditionally 
used for image data, can also be applied to time series and spatially structured 
data. In the context of CP data, CNNs can detect spatial and temporal patterns 

Fig. 1   The six phases of CRISP-DM, adapted from Martinez-Plumed et al. (2021)
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in passenger data, including the number of trains affected by delays, by learn-
ing hierarchies of attributes. This capability is useful for identifying trends and 
patterns. Recurrent neural networks (RNNs) are designed to handle sequential 
and temporal data, such as those provided by CP, capturing long-term depend-
encies and patterns in time series, which are essential for historical data-based 
predictions. Random forest combines multiple decision trees to reduce the risk 
of overfitting, capturing complex interactions between variables. Extra-trees use 
a more random splitting process than random forest, increasing diversity among 
trees and potentially improving performance on certain datasets. This technique 
is computationally efficient and can handle variability and complexity (Müller 
2016).

5.	 Evaluation: Metrics such as precision, recall, F1-score, mean square error (MSE) 
and root mean square error (RMSE) are used to evaluate the models’ predictive 
effectiveness. One-hot encoding (OHE) is applied to the ‘Geographic Area’ varia-
ble to convert its categories into binary values, enabling compatibility with differ-
ent machine learning models. A comparison was made between the performance 
of neural networks and decision trees in different data scenarios, identifying the 
most suitable models for smaller and larger datasets, as well as their relationship 
with existing literature.

6.	 Implementation: Operational integration involves implementing the developed 
models in CP’s daily operations to predict the impacts of disruptive events.

3.2 � Used models

3.2.1 � Multilayer perceptron (MLP)

An MLP (multilayer perceptron) is composed of multiple layers of neurons, where 
each neuron in a layer is connected to all neurons in the preceding and succeeding 
layers. The output of a neuron ai  given by ai = f

�

∑

jwijxi + bi

�

 , where f  is the acti-
vation function, wij is the weight of the connection between neurons i and j, xj is the 
input from the previous layer, and bi is the bias term (Su et al. 2022).

3.2.2 � Recurrent neural network (RNN)

An RNN processes input sequences X = (x1, x2,… , xT )  sequentially over time. At 
each time step t , the hidden state ht is updated based on the previous hidden state 
ht−1 and the current input xt∶ ht = f (Whhht−1 +Wxhxt + bh) , where f  is a non-linear 
activation function, Whh and  Wxh are weight matrices, and bh is a bias vector (Su 
et al. 2022).

3.2.3 � Convolutional neural network (CNN)

CNNs use compact filters to create feature maps by identifying specific attrib-
utes in input data, such as edges and textures. In a Conv1D layer, for input 
X(dimension(W, 1)) and filter F(dimension(3, 1)) , the convolution is:
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where Y  is the output of the convolutional layer (Boateng and Yang 2023).

3.2.4 � Random forests (RF)

In classification tasks using random forest, each tree in the ensemble makes a class 
prediction for a new input, and the final assigned class is the one that receives the 
most votes from the trees. In regression tasks, the result is the average of the results 
from the different trees. Essentially, each tree votes for a class, and the class with the 
most votes is chosen as the final prediction (Nabian et al. 2019).

3.2.5 � RF‑Extra

In extra-trees, randomness is introduced in two main ways. First, as in RF, a random 
subset of features is used. Second, unlike RF, the split points in the trees are not cho-
sen deterministically; instead, for each selected feature, a split value is chosen ran-
domly, and the best of these points is used to split the node. This increases the diversity 
among the trees in the model, helping to reduce the model’s variance. The prediction 
of an extra-trees ensemble is given by the average (in regression) or the mode (in clas-
sification) of the predictions from all the individual trees (Geurts et al. 2006).

3.2.6 � Hyperparameters

Our hybrid approach for hyperparameter optimization merges grid and random 
search (Belete and Huchaiah 2022). First, grid search provides a thorough analysis 
using a predefined matrix of values, including learning rate and neuron count. Then, 
having identified a promising range, we switched to random search for a faster, less 
resource-intensive exploration. This combination yields an optimal hyperparameter 
combination under given assumptions, balancing computational cost and efficiency, 
resulting in a model with good fit to training data and effective generalization to new 
data. For our grid strategy, we used the values described in Table 1 and Table 2.

3.3 � Data description

The dataset for this study was provided by the passenger railway operator CP. This 
study analyzed the period from 2015 to 2022. Due to the COVID-19 pandemic, reli-
able data on the number of passengers per day at the control point was not avail-
able for the years 2021 and 2022. Consequently, these values were replaced with the 
average from the other years under analysis. The periods of lockdown hindered CP’s 
ability to provide this variable with reliability for those years. We found 166,471 
records of disruptive events for the selected period. For analysis purposes, only 
records with affected trains and assigned delay minutes were selected, resulting in 
89,338 records of disruptive events. Figure 2 illustrates the betweenness centrality 

Y[i] =
∑2

j=0
X
[

i + j
]

⋅ F
[

j
]
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of the railway network under analysis. This illustration is particularly useful for 
understanding the critical points and areas with the greatest influence; the closer to 
1 (lighter color), the greater is the influence, and the closer to 0 (darker color), the 
smaller is the influence on the network.

Table  3 describes the variables of the dataset initially collected for the experi-
ments undertaken in this study. Variables 1 through 26 are independent, and vari-
ables 27 through 29 are dependent.

3.4 � Data processing

The analysis focused on three aspects: the number of delayed trains, total delay 
minutes, and affected passengers. Passenger numbers were classified into value 
classes to mitigate the complexity of forecasting a discrete value, while the other 
variables were analyzed using regression. The lower-class range was set from 1 to 

Table 2   Hyperparameters combined in random forests

n estimators Max depth Min samples split Min samples leaf Criterion

[50, 100, 150, 200] [None, 10, 20, 30] [2, 5, 10] [1, 2, 4] [‘gini’, ‘entropy’, 
‘Poisson’]

Fig. 2   Betweenness centrality 
of the railway network under 
analysis
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300, with 300 representing the minimum occupancy of the smallest train operated. 
This approach establishes a direct relationship between the predicted class and the 
rolling stock. Figure 3 illustrates the distribution of the 29 variables showing vary-
ing data distributions, skewness, and kurtosis. Variables 1–3 had less variation and 

Table 3   Description of variables

# Short form Description Data type Data range Number 
of unique 
values

1 AltModes Number of alternative modes of 
transportation

Num 0 to 87 32

2 Suppressions Total number of suppressions 
occurred

Num 0 to 1498 36

3 UnplannedTrains Total number of unplanned trains Num 0 to 39 19
4 DailyTrains Average daily number of trains at the 

facility
Num 2 to 419 202

5 BetwCent Betweenness centrality indicator Num 0 to 0.44 32
6 CloseCent Closeness centrality indicator Num 0 to 0.42 28
7 Headway Time interval between trains (head-

way)
Num 4 to 145 95

8 Track Railway Track Cat 0 to 3 4
9 InfraDam Damage to the infrastructure Cat 0 to 1 2
10 RollStockDam Damage to rolling stock Cat 0 to 1 2
11 AssistReq Request for assistance Cat 0 to 1 2
12 MinorInj Number of minor injuries Num 0 to 34 6
13 SeriousInj Number of serious injuries Num 0 to 3 3
14 Deaths Number of recorded deaths Num 0 to 3 4
15 PaxPerDay Number of passengers per day at the 

control point
Num 28 to 164,359 339

16 Km Number of kilometers (the train that 
had the origin of the disruptive 
event)

int64 4265 to 631,816 102

17 Area Geographic area Cat 1 to 16 16
18 CauseID Incident cause group identity (ID) Cat 110 to 999 37
19 GeoCtrl Geographical control point Cat 1008 to 95,125 416
20 SerialID Rolling stock serial identification Cat 350 to 9630 12
21 Temp Temperature in degrees Celsius Num -3.0 to 35.3 352
22 WindSpd Wind speed (km/h) Num 0.3 to 200.4 558
23 Hour Hour of the day Cat 0 to 23 24
24 DayWeek Day of the week Cat 0 to 6 7
25 Month Month of the year Cat 1to 12 12
26 ServGroup Train service group Cat 1to 39 29
27 TrainsDelay Number of trains affected by delay Num 1to 3839 129
28 TotDelay Total number of minutes of delay Num 1to 25,001 792
29 PaxAff Number of affected passengers Num 1to 615,226 4967
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lower median values, while 19–21 showed more variation and outliers, indicating a 
broader range. Variables 22–24 were more uniform, with fewer outliers. The whisk-
ers in the data mostly extended to 1.5 times the interquartile range, highlighting 
common data ranges. This visual analysis underscored differences in centrality and 
dispersion among the variables.

3.4.1 � Addressing extreme values

Two commonly used techniques were employed for the removal of outliers: the 
interquartile range (IQR) and the standard deviation (SD). The IQR, a measure of 
statistical dispersion, is defined as the difference between the third and first quartiles 
(Q3 and Q1, respectively) in a data distribution. This measure indicates the median 
variation of the data and is particularly useful in datasets with non-normal distribu-
tions (Smiti 2020). The IQR is often used to identify outliers, which are defined as 
values that lie below Q1 − 1.5 IQR or above Q3 + 1.5 IQR.

3.4.2 � Dimensionality reduction

Reducing dimensionality helps identify redundant variables and stabilize models. 
One common technique is the Chi-square test, which checks for association or inde-
pendence between two categorical variables. It compares observed and expected fre-
quencies to determine if variables are independent. The result is compared to a criti-
cal value from the Chi-square distribution (Yaghini et al. 2013). If the result exceeds 

Fig. 3   Original dataset (normalized data)
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the critical value, the null hypothesis of independence is rejected. Another technique 
for dimensionality reduction is the least absolute shrinkage and selection operator 
(LASSO). LASSO regularization penalizes the absolute value of regression coef-
ficients, which can lead some coefficients to become exactly zero. This indicates that 
the features associated with these coefficients have no impact on the model, thereby 
reducing the number of used features (Klumpenhouwer and Shalaby 2022).

Similarly, recursive feature elimination (RFE) is a feature selection method that 
systematically removes the least important features from a model. Initially, the 
model is fitted with all features, and they are ranked based on the absolute value 
of their coefficients. The feature with the smallest coefficient is removed, and the 
model is refitted. This process is repeated until the desired number of features is 
achieved (Tiong et al. 2023).

Both LASSO and RFE are effective in simplifying a model while retain-
ing the most significant features, improving both the model’s performance and 
interpretability.

3.4.3 � Datasets

In this section, we demonstrate the data processing for each independent attribute 
under study. The analysis focused on several key-independent attributes, including 
the number of alternative modes of transportation, total suppressions, and unplanned 
trains. It examined the average daily number of trains at the facility, betweenness 
and closeness centrality indicators, and the headway between trains. The report 
highlighted railway track conditions, infrastructure and rolling stock damage, assis-
tance requests, and the number of minor and serious injuries, as well as recorded 
deaths. Additionally, it detailed passenger numbers at the control point, kilometers 
traveled by the disrupted train, the geographic area of incidents, cause group identi-
ties, control points, rolling stock IDs, and environmental factors such as temperature, 
wind speed, time of day, week, and month. The analysis also included train service 
groups. The number of trains affected by delay, the total number of minutes of delay, 
and the number of passengers affected were considered dependent variables subject 
to dimensionality reduction.

3.5 � Number of trains affected by delay

Figure  4 illustrates the removal of outliers. For easier graphical visualization, the 
values were logarithmically transformed. The left graph uses standard deviation, and 
the right graph employs the IQR to predict delay minutes. Only attributes with sig-
nificant differences (p-value > 0.05) are shown. Both graphs include average daily 
train count, centralities, train interval, presence of tracks, total kilometers, geograph-
ical area, incident cause, control point, circulating material, day of the week, and 
service group. Exclusively in the standard deviation method are alternative transpor-
tation, total suppressions, temperature, and month. Exclusively in the IQR method 
are passenger count at the control point and time of day.
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3.6 � Total number of minutes of delay

Figure  5 illustrates the removal of outliers using standard deviation (left) and 
the IQR (right) to predict delay minutes. The common attributes include aver-
age daily train count, centralities, train interval, presence of tracks, total kilom-
eters, geographical area, incident cause ID, control point, rolling stock ID, day of 
the week, and service group classification. Exclusively in the standard deviation 
method are alternative transportation, total suppressions, temperature, and month. 
Exclusively in the IQR method are daily passenger count at the control point and 
time of day.

Fig. 4   Attributes with statistically significant differences (number of trains affected by delay). Variables 
are numbered as per Table 3

Fig. 5   Attributes with statistically significant differences (total number of minutes of delay). Variables 
are numbered as per Table 3
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3.7 � Number of affected passengers

Figure  6 illustrates the removal of outliers for the number of passengers, using 
standard deviation (left) and the IQR (right), with statistically significant attributes 
(p value < 0.05). Common to both methods are betweenness and closeness centrali-
ties, train interval, presence of tracks, train kilometers, covered area, incident cause 
ID, control point ID, rolling stock ID, day of the week, and service group classifi-
cation. Exclusively in the standard deviation method are alternative transportation, 
total suppressions, temperature, and month. Exclusively in the IQR method are aver-
age daily train count, daily passenger count at control points, and time of day.

4 � Results

4.1 � Number of trains affected by delay

Attributes closeness centrality, railway track, hour of day, and train service group 
emerge as the most predominant, featuring in 12 datasets. This observation suggests 
their significant relevance and central influence in the addressed analyses, under-
lining their fundamental role in the conducted investigations. Closely following are 
the attributes average daily trains, train headway, daily passengers at control point, 
and train’s total kilometers, each appearing in eleven datasets. Subsequently, there 
is a group of attributes comprising betweenness centrality measure, geographic area 
coverage, incident cause ID, and geographical control point identification, each pre-
sent in ten datasets. The attribute day of week is found in nine datasets. In turn, 
the attribute month of year is mentioned in eight datasets, indicating notable impor-
tance, although not as widespread as the others.

Fig. 6   Attributes with statistically significant differences (number of affected passengers). Variables are 
numbered as per Table 3
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Finally, the attributes alternative transportation, temperature in Celsius, and 
wind speed in km/h, which appear less frequently, are present in the betweenness 
centrality measure, average daily train count, and four datasets, respectively. This 
frequency pattern may indicate a more limited application or specific relevance in 
certain analytical contexts. The attribute total suppression, appearing only in two 
datasets, stands out as the least frequent, which might suggest a very specific use or 
limited focus in the undertaken analyses.

4.1.1 � Hyperparameters

MLP: Our MLP model, featuring four dense layers and L1 regularization in the first 
layer to prevent overfitting, comprises 128, 64, and 32 neurons, all with ‘relu’ acti-
vation, and a linear output layer. We found dropout unhelpful for improvement. The 
data split was 80% training, 20% testing.

RNN: The RNN model includes two recurrent layers (64 and 32 units) with ‘relu’ 
activation, followed by a dense output layer. The data split mirrors the MLP.

CNN: Our CNN consists of three 1D convolutional layers (128, 64, and 32 fil-
ters), a flattening layer, and a dense output layer. Dropout was not effective here, and 
‘relu’ activation was used throughout the process. The data split is consistent with 
the MLP and RNN.

We used an alpha of 0.01, an initial learning rate of 0.001, and a batch size of 32. 
Everything else remained consistent across all models.

RF: The random forest model uses 200 trees and the ‘Poisson’ criterion, with a 
fixed random seed of 42 for consistency.

RF-Extra: Similar to RF, the extra trees model employs 200 trees and the 
‘Poisson’ criterion with the same random seed, offering more randomness in tree 
construction.

We used a max depth of 20, minimum samples split of 5, and a minimum sam-
ples leaf of 4 for all random forest models.

4.1.2 � Results

Table  4 describes the best results for datasets with approximately 8,000 records, 
with CNN and RNN performing particularly well on smaller sets. The very small 
variation in indicators across various preprocessing techniques underscores the 
robustness of these models in handling differences in data treatment.

Table 5 describes the best results for datasets with approximately 8,000 records. 
RF with IQR winsorization and Chi-squared proved effective with an MSE of 1.53, 
an MAE of 0.93, and an RMSE of 1.24. In contrast, the RF-Extra variant did not 
outperform RF.

MLP: With an MSE of 1.65 and an MAE of 0.86 using IQR winsorization and 
RFE, the MLP demonstrated its capacity to efficiently handle large volumes of data.

This analysis demonstrates the importance of selecting appropriate models and 
preprocessing strategies in machine learning. CNN and RNN are suitable for smaller 
datasets, whereas RF and MLP perform better with larger datasets. For example, 
using Standard Deviation Erase and LASSO in an RF model on a 7,934-record 



Reducing uncertainty from disruptive events in passenger railways

dataset resulted in an MSE of 3.85, an MAE of 1.31, and an RMSE of 1.96, high-
lighting its effectiveness for large data volumes. The study furthers understanding of 
how preprocessing methods impact model accuracy and efficiency. A clear correla-
tion exists between preprocessing types and model performance, particularly with 

Table 4   Results for the number of affected trains (≈ 8000 records)

Dataset Method MSE MAE RMSE Records

IQR erase with Chi-squared CNN 1.49 0.84 1.22 8098
IQR erase with RFE and OHE RNN 1.49 0.85 1.22 8098
IQR erase with LASSO and OHE CNN 1.49 0.85 1.22 8098
IQR erase with Chi-squared and OHE CNN 1.50 0.83 1.22 8098
IQR erase with LASSO RNN 1.50 0.87 1.23 8098
IQR erase with RFE RNN 1.52 0.82 1.23 8098
SD erase with LASSO and OHE RF 3.84 1.31 1.96 7934
SD erase with LASSO RF 3.85 1.31 1.96 7934
SD erase with Chi-squared and OHE RF 3.90 1.32 1.97 7934
SD erase with Chi-squared RF 3.91 1.32 1.98 7934
SD erase with RFE RNN 4.11 1.19 2.03 7934
SD erase with RFE and OHE MLP 4.15 1.17 2.04 7934

Table 5   Results for the number of affected trains (≈ 18,000 records)

Dataset Method MSE MAE RMSE Records

IQR winsorized with Chi-square RF 1.53 0.93 1.24 17,868
IQR winsorized with Chi-square and OHE RF 1.54 0.93 1.24 17,868
IQR winsorized with LASSO RF 1.56 0.93 1.25 17,868
IQR winsorized with LASSO and OHE RF 1.56 0.93 1.25 17,868
IQR winsorized with RFE and OHE MLP 1.59 0.87 1.26 17,868
IQR winsorized with RFE MLP 1.65 0.86 1.28 17,868
SD winsorized with LASSO RF 9.83 1.88 3.14 17,868
SD winsorized with LASSO and OHE RF 9.84 1.87 3.14 17,868
SD winsorized with Chi-square RF 9.94 1.88 3.15 17,868
SD winsorized with Chi-square and OHE RF 9.94 1.88 3.15 17,868
SD winsorized with RFE and OHE MLP 11.12 1.64 3.33 17,868
SD winsorized with RFE MLP 11.13 1.64 3.34 17,868
Original data RNN 22.37 1.80 4.73 17,868
Original data with OHE MLP 22.46 1.78 4.74 17,868
Original data with LASSO selection and OHE MLP 22.71 1.77 4.77 17,868
Original Data with Chi-square selection MLP 23.07 1.79 4.80 17,868
Original data with Chi-square selection and OHE MLP 23.07 1.78 4.80 17,868
Original data with LASSO selection MLP 23.16 1.79 4.81 17,868
Original data with RFE CNN 26.64 1.87 5.16 17,868
Original data with RFE and OHE CNN 27.48 1.87 5.24 17,868
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MSE and MAE metrics. The effectiveness of techniques like erasing and winsoriza-
tion, based on IQR and SD, depends on the dataset size.

In smaller datasets (around 8,000 records), IQR-based outlier erasing is efficient 
in CNN and RNN models. For example, IQR erase in CNN yielded an MSE of 1.49 
and an MAE of 0.84, while in RNN, it resulted in an MSE of 1.50 and an MAE of 
0.87. This suggests IQR is more beneficial for smaller datasets in neural network 
models. In contrast, for larger datasets (about 18,000 records), winsorized standard 
deviation suits RF and MLP models better. For instance, this method in RF led to 
an MSE of 3.84 and an MAE of 1.31, and in MLP, an MSE of 4.15 and an MAE of 
1.17, indicating its efficacy for larger datasets in complex data models.

Additionally, incorporating techniques like Chi-square, LASSO, and RFE, with 
or without OHE, adds complexity to the analysis. For instance, combining IQR win-
sorization and LASSO in an RF model for a larger dataset achieved an MSE of 1.56 
and an MAE of 0.93, showing the significant role of feature selection in enhancing 
model performance.

4.2 � Total number of minutes of delay

The attributes average daily train count, betweenness centrality measure, closeness 
centrality measure, and geographical control point are the most prominent, each fea-
tured in twelve datasets, suggesting their constant presence and potentially higher 
relevance. Subsequently, attributes closeness centrality measure, train headway time, 
daily passenger count at control point, total kilometers per train, and Rolling stock 
ID, present in eleven datasets each, follow in importance. These attributes demon-
strate significant utility across various analyses. The attribute geographic area cover-
age, found in ten datasets, indicates moderate relevance. The attributes wind speed 
in km/h, hour of day, day of week, and month of year, mentioned in eight datasets 
each, and the attributes Incident cause ID and temperature in Celsius, appearing in 
seven datasets, imply considerable importance but are not as central as the more 
frequently occurring variables. This distribution might suggest that there is no direct 
correlation between frequency of occurrence and impact. Finally, the attributes 
alternative transportation and total suppressions are the least frequent, appearing 
in only three and two datasets, respectively, indicating their limited use or specific 
application in the studied context.

4.2.1 � Hyperparameters

MPL: Our multilayer perceptron neural network has three dense layers. The first 
layer, with 128 neurons, uses L1 regularization to avoid overfitting. The second 
layer has 64 neurons, both employing ‘relu’ activation. Dropout did not significantly 
improve the model. It ends with a linear output layer suitable for regression. The 
dataset was split into 80% training and 20% testing.

RNN: The RNN model comprises two SimpleRNN layers (64 and 32 units) with 
‘relu’ activation, capturing temporal data dependencies and ending with a linear out-
put layer. The data split is 80% for training and 20% for testing.
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CNN: Our CNN features three 1D convolutional layers (128, 64, and 32 filters) 
with ‘relu’ activation, followed by a flattening layer and a dense output layer. Drop-
out had no notable effect. The data split is 80% training and 20% testing.

We used an alpha of 0.01, an initial learning rate of 0.001, and a batch size of 32. 
Everything else remained consistent across all models.

RF: The random forest model includes 200 trees using the ‘Poisson’ criterion, 
selected for our data’s attributes, with a fixed random seed of 42 for consistent 
results which is specifically designed for target variables that represent count data, 
such as the number of events or occurrences. This criterion ensures that the splits 
in the trees are optimized for the nature of the data, capturing its distribution effec-
tively. A fixed random seed of 42 was applied to ensure consistent and reproducible 
results.

RF-Extra: Similar to RF, the extra-trees model uses 200 trees with the ‘Poisson’ 
criterion and a random seed of 42, offering more variability in tree construction. We 
use a max depth of 20, minimum sample split of 5, and a minimum samples leaf of 4 
for all random forest models.

4.2.2 � Results

Table 6 with the results show that in smaller datasets of approximately 8000 records, 
RF models with various preprocessing methods like IQR erasure are effective. For 
example, RF with IQR erasure and LASSO records an MSE of 64.19 and an MAE 
of 5.706, indicating good performance in predicting the number of minutes of delay. 
In contrast, the CNN model with IQR erasure and RFE (recursive feature elimina-
tion) has a slightly lower performance with an MSE of 74.77 and an MAE of 5.333, 
suggesting it may be less effective than RF in this scenario.

Table 7 shows the larger datasets of approximately 18,000 records; RF models 
with IQR winsorized and RFE variants show varied results. For instance, RF with 
IQR winsorized and Chi-square has an MSE of 68.23 and an MAE of 5.9, showing 

Table 6   Results for the total number of delays (≈ 8000 records)

Dataset Method MSE MAE RMSE Records

IQR erase with LASSO and OHE RF 64.13 5.665 8.008 7958
IQR erase with LASSO RF 64.19 5.706 8.012 7958
IQR erase with Chi-square RF 65.27 5.750 8.079 7958
IQR erase with Chi-square and OHE RF 65.48 5.724 8.092 7958
IQR erase with RFE and OHE RF 73.78 6.065 8.589 7958
IQR erase with RFE CNN 74.77 5.333 8.647 7958
SD erase with LASSO RF 223.07 9.540 14.94 7820
SD erase with Chi-square RF 223.26 9.540 14.940 7820
SD erase with LASSO and OHE RF 223.46 9.460 14.950 7820
SD erase with Chi-square and OHE RF 223.55 9.450 14.950 7820
SD erase with RFE and OHE RF 249.96 10.07 15.810 7820
SD erase with RFE RF 250.92 10.10 15.840 7820
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moderate efficacy in larger-scale predictions. RF-Extra models with original data 
exhibit much higher MSEs, like 6547.90 for RF-Extra Original, indicating reduced 
performance due to data complexity and volume.

Comparing models and preprocessing methods, RF models generally show a 
more consistent performance across different preprocessing techniques than RF-
Extra variants, especially for larger datasets. This highlights the importance of 
choosing the right preprocessing method to optimize predictions.

4.3 � Number of affected passengers

The primary attributes in 11 datasets are railway track presence, daily passenger 
count, geographic area, and geographical control point identification. Following 
these are betweenness centrality, train headway time, day of week, and train ser-
vice group classification in ten datasets. Less prevalent are average daily train count, 
closeness centrality, and total kilometers per train, present in nine datasets. Incident 
cause ID and rolling stock ID, found in eight datasets, have a slightly lower rel-
evance. The hour of day and temperature in Celsius appear in six and five datasets, 
respectively. Attributes like alternative transportation, wind speed, and month of 
year, noted in four datasets each, indicate a specific focus. The least common attrib-
utes, total suppressions, is only in two datasets.

Table 7   Results for the total number of delays (≈ 18,000 records)

Dataset Method MSE MAE RMSE Records

IQR winsorized with Chi-square RF 68.23 5.900 8.260 17,868
IQR winsorized with LASSO RF 68.37 5.907 8.269 17,868
IQR winsorized with Chi-square and OHE RF 68.49 5.883 8.276 17,868
IQR winsorized with LASSO and OHE RF 68.61 5.889 8.283 17,868
IQR winsorized with RFE and OHE RF 72.41 6.061 8.510 17,868
IQR winsorized with RFE RF 72.45 6.062 8.512 17,868
SD winsorized with Chi-square RF 1061.37 17.691 32.579 17,868
SD winsorized with Chi-square and OHE RF 1063.06 17.523 32.605 17,868
SD winsorized with LASSO RF 1117.30 18.569 33.426 17,868
SD winsorized with LASSO and OHE RF 1119.40 18.433 33.458 17,868
SD winsorized with RFE and OHE RF 1186.83 18.659 34.450 17,868
SD winsorized with RFE RF 1187.46 18.692 34.460 17,868
Original data with LASSO selection and OHE RF 5307.02 22.840 72.850 17,868
Original data with Chi-square selection and OHE RF 5320.49 22.860 72.940 17,868
Original data with OHE RF 5324.62 22.840 72.970 17,868
Original data with Chi-square selection RF-Extra 6319.07 23.790 79.490 17,868
Original data with LASSO selection RF 6343.70 23.410 79.650 17,868
Original data RF-Extra 6547.90 23.835 80.919 17,868
Original data with RFE RF-Extra 7091.64 27.870 84.210 17,868
Original data with RFE and OHE RF-Extra 7687.87 27.820 87.680 17,868
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4.3.1 � Hyperparameters

MLP: Our MLP model features two dense layers, the first with ‘relu’ and the second 
with ‘softmax’ activation for class categorization. We used the ‘adam’ optimizer, 
‘categorical_crossentropy’ loss, and implemented EarlyStopping (min_delta: 0.001, 
patience: 5). The training spanned 100 epochs, a batch size of 32, and a 20% valida-
tion split.

CNN: The CNN has a 1D convolutional layer, MaxPooling, Flatten, and two 
dense layers. Its training and compilation mirrored the MLP.

RNN: Our RNN model includes an 80-unit SimpleRNN layer and a ‘softmax’ 
dense layer. It shares the MLP’s compilation and training settings, including Ear-
lyStopping. We used an alpha of 0.01, an initial learning rate of 0.001, and a batch 
size of 32. Everything else remained consistent across all models.

RF: The RandomForestClassifier model with 100 trees was trained on the split 
dataset.

RF-Extra: Similar to RF, the Extra-Trees model, with the same tree count, offers a 
more randomized approach. We used a max depth of 20, minimum samples split of 
5, and a minimum samples leaf of 4 for all random forest models.

Synthetic minority over-sampling technique (SMOTE) was applied to balance 
class representation in cases of higher values.

4.3.2 � Results

Table 8 describes the results for the number of affected passengers.
The data shows that larger test sets result in more accurate evaluations for both 

CNN and RF models. Specifically, CNN accuracy improves from 0.63 to 0.80 with 
a test set expansion from 7,998 to 148,536 samples, highlighting the impact of the 
test data volume on the model generalization. CNNs exhibit notable accuracy fluc-
tuations based on configuration and test size, especially in class handling, as seen in 
balanced macro averages. Conversely, RF models also show accuracy growth from 
0.64 to 0.96, but differ in other metrics. The most precise RF model has high macro 
and weighted averages, yet a lower mean area under the receiver operating charac-
teristic curve (receiver operating characteristic (ROC) curve), suggesting class dif-
ferentiation challenges despite the overall accuracy.

This analysis underscores how CNN and RF model performances vary with test 
set size, indicating the need for broader considerations in model selection, such as 
test set size, class balance, and class differentiation.

5 � Discussion

Attributes such as closeness centrality, type of track, time of day, and train ser-
vice group classification are significantly correlated with efficiency in predicting 
disruptive events, according to Fabella and Szymczak (2021), who also highlight 
the importance of weather conditions. CNN and RNN models are effective with 
smaller datasets, while RF and MLP perform better with larger datasets, as stated 
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by Grandhi et al. (2021) and Chen et al. (2022). Preprocessing methods such as win-
sorization and standard deviation impact model results, according to Huang et  al. 
(2020) and Ilalokhoin et al. (2022). Our study reinforces these findings, emphasiz-
ing that closeness centrality and average daily train count are crucial for predicting 
delays, aligning with Chen et al. (2022). For predicting total minutes of delay, we 
found that the average daily train count, betweenness centrality measure, and head-
way were prominent attributes. These findings are consistent with Grandhi et  al. 
(2021), which demonstrated that weather variables, such as temperature and winter 
months, are essential in predicting total delays, with neural networks outperforming 
other predictive models. Our analysis of affected passengers by delays also showed 
parallels with previous studies. Attributes such as track presence, daily passenger 
count, and identification of the geographic control point were identified as crucial, 
appearing in eleven datasets. These results align with Klumpenhouwer and Shalaby 
(2022), highlighting the effectiveness of machine learning models like random forest 
regression and elastic net in predicting delays, identifying signal failures and fatal 
incidents as influential attributes.

Our approach introduces new predictor variables, not thoroughly explored in pre-
vious studies, as described in Table 9. The inclusion of centrality measures, infra-
structure characteristics, and environmental factors offers a more robust and contex-
tualized analysis of railway delays. Unlike previous studies that primarily focused on 
operational and infrastructure variables, our research incorporates a broader range of 
indicators, enhancing the prediction and management of disruptive events.

The machine learning models used in our study are especially CNN and RNN for 
smaller datasets, and RF for larger datasets. For example, CNN with IQR erase and 
Chi-squared achieved an MSE of 1.49 and MAE of 0.84 in smaller datasets, while 
RF with IQR winsorized and Chi-square obtained an MSE of 1.53 and MAE of 0.93 
in larger datasets. These results are consistent with the literature, where neural net-
work and random forest models frequently outperform traditional methods in delay 
prediction.

The importance of machine learning models is corroborated by Yaghini et  al. 
(2013), who demonstrated the high accuracy and low training time of predictive 
models, facilitating the minimization of delays and future operational problems. 
Additionally, Li et  al. (2020) highlighted the effectiveness of models based on 
eXtreme Gradient Boosting (XGBoost) in predicting the number of trains affected 
by primary delays, reinforcing the applicability of advanced machine learning tech-
niques. A unique aspect of our study is the detailed analysis of different preproc-
essing techniques and their impact on predictive models. We demonstrated that the 
effectiveness of techniques like IQR and SD erase, as well as feature selection meth-
ods like LASSO and Chi-squared, varies with the dataset size. This level of detail 
provides valuable insights that can improve the implementation of predictive models 
in different contexts, an area that, despite its importance, is less emphasized in the 
existing literature. For example, Gao et al. (2023) demonstrated that the inclusion 
of dispatch commands and the spatiotemporal propagation relationships of delays 
significantly improved predictive accuracy, with a coefficient of determination (R2) 
of 0.87. These results highlight the importance of sophisticated preprocessing and 
feature selection techniques to improve the accuracy of predictive models.
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The three variables analyzed in this study offer an essential tool for passenger rail 
transport companies, such as CP, to minimize the uncertainty arising from disruptive 
events. By studying these variables in an integrated manner, companies can obtain 
a more holistic and accurate view of the possible consequences and adequately 
prepare to face them. Predicting attributes related to disruptive events enables CP 
to assess its risk tolerance and implement contingency plans more effectively. For 
example, if a particular event causes a disruption in rail service, CP can strategi-
cally cancel certain trains, adjust train frequency sequences, or use replacement roll-
ing stock. Additionally, understanding the impact of a disruptive event allows CP to 
activate alternative transportation options, such as buses, to ensure passengers reach 
their destinations with little impact. This approach can enhance passenger satisfac-
tion by reducing complaints and increasing revenue by avoiding passenger refunds. 
Alternatively, when feasible, passengers can be redirected through existing services 
unaffected by the disruptive event. As CP is responsible for guaranteeing public ser-
vice, it may face penalties from the state regulator in cases of non-compliance with 
commercial offerings.

Our conclusions, essential for the operator CP, highlight the limitations of our 
study in terms of scope and data. Although the data source follows the International 
Union of Railways standard 450, a framework developed by the International Union 
of Railways (UIC) to promote cooperation among railway operators, infrastruc-
ture managers, and other stakeholders, and focused on performance evaluation of 
the network related to railway traffic operation for quality analysis, including delay 
coding and cause assignment processes.  Future investigations should validate the 
model with data from various operators, testing its universality and flexibility in dif-
ferent contexts. Additionally, merging data from multiple sources can enhance the 
accuracy and applicability of the model.

6 � Conclusion

This study stands out for its innovative and comprehensive approach, integrat-
ing a diverse set of attributes that offer a robust analysis. Unlike previous stud-
ies, which often limit themselves to operational and infrastructure variables, this 
study incorporates centrality indicators, infrastructure and rolling stock damage, 
environmental and temporal factors, and human and social variables such as the 
number of injuries and fatalities recorded. Additionally, the study uses real data 
specific to the Portuguese rail operator Comboios de Portugal (CP), allowing for 
a contextualized analysis of the Portuguese reality. The originality of the study 
is also highlighted by the introduction of innovative predictor variables and a 
detailed comparison between different evaluation methods, such as convolutional 
neural networks (CNN), recurrent neural networks (RNN), and decision trees, 
offering valuable insights for crisis management and contingency planning in sce-
nario simulations. In summary, the article significantly contributes to the existing 
literature by providing a holistic and contextualized analysis of rail delays, poten-
tially influencing policies and practices in rail operations management and inci-
dent response. We explored neural network models and decision trees, identifying 
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key variables and evaluating the models’ effectiveness across various data scenar-
ios. For the attributes of delayed trains, CNN and RNN models performed equally 
well. The RF method yielded the best results for total delay minutes, while CNNs 
were most efficient for predicting passenger numbers, achieving superior out-
comes. The findings highlight the importance of attributes such as closeness cen-
trality measure, railway track presence, hour of day, and train service group clas-
sification in predicting delays and impacts on railway services. Our work finds 
notable parallels in the existing literature. For example, Fabella and Szymczak 
(2021) examined the vulnerability of the German railway network to natural haz-
ards, highlighting the relevance of variables such as railway track presence and 
hour of day. This observation strongly resonates with our findings, underscoring 
the importance of these factors in predicting delays due to natural disasters. Addi-
tionally, the approach of Grandhi et  al. (2021) in structuring impact estimates 
of disruptive events is reflected in the efficacy we observed in neural network 
models, such as CNN and RNN, for smaller datasets. This consistency extends 
the applicability of these models in various railway contexts. The study of Chen 
et  al. (2022) on delays in Hong Kong’s Mass Transit Railway also underscored 
the importance of variables like weather conditions and types of tracks, align-
ing with our identification of similar variables and reinforcing the universality 
of these factors in delay prediction. Lastly, the approach of Huang et al. (2020), 
which used a hybrid model based on Bayesian networks to predict consequences 
of disruptions, highlights the inherent complexity of modeling these events. Our 
study complements this perspective by demonstrating the effectiveness of specific 
preprocessing techniques and selecting appropriate models for datasets of differ-
ent sizes.

The implementation of the model developed in this study will bring signifi-
cant practical benefits. More accurate prediction of the impacts of disruptive 
events will enable efficient resource management, with a better prioritization of 
responses and the allocation of alternative transport options. Effective commu-
nication of delay information will reduce frustrations and complaints, improv-
ing passenger satisfaction (Sogbe et  al. 2024). The ability to simulate and pre-
dict future impacts will facilitate the planning of preventive strategies, increasing 
operational resilience. With the reduction of delays and cancellations, CP will 
avoid financial losses, ensuring a more consistent service. In summary, the model 
will enhance punctuality, operational efficiency, and passenger experience, pro-
moting more reliable and efficient railway operations. In summary, while our 
study offers a significant contribution to the field, it is crucial to recognize its 
limitations to the specific context of CP. Incorporating data from more railway 
operators and additional variables could enhance understanding of sector dynam-
ics, validate this study’s results, and improve predictive models’ global applica-
bility in railway operations.
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