Please use this identifier to cite or link to this item: http://hdl.handle.net/10071/30565
Author(s): Susskind, Z.
Arora, A.
Miranda, I. D. S.
Bacellar, A. T. L.
Villon, L. A. Q.
Katopodis, R. F.
Araújo, L. S. de
Dutra, D. L. C.
Lima, P. M. V. L.
França, F.
Breternitz, M.
John, L. K.
Date: 2023
Title: ULEEN: A novel architecture for ultra low-energy edge neural networks
Journal title: ACM Transactions on Architecture and Code Optimization
Volume: 20
Number: 4
Reference: Susskind, Z., Arora, A., Miranda, I. D. S., Bacellar, A. T. L., Villon, L. A. Q., Katopodis, R. F., Araújo, L. S. de, Dutra, D. L. C., Lima, P. M. V. L., França, F., Breternitz, M., & John, L. K. (2023). ULEEN: A novel architecture for ultra low-energy edge neural networks. ACM Transactions on Architecture and Code Optimization, 20(4), 61. https://dx.doi.org/10.1145/3629522
ISSN: 1544-3566
DOI (Digital Object Identifier): 10.1145/3629522
Keywords: Weightless neural networks
WiSARD
Neural networks
Inference
Edge computing
MLPerf tiny
High throughput computing
Abstract: "Extreme edge"1 devices, such as smart sensors, are a uniquely challenging environment for the deployment of machine learning. The tiny energy budgets of these devices lie beyond what is feasible for conventional deep neural networks, particularly in high-throughput scenarios, requiring us to rethink how we approach edge inference. In this work, we propose ULEEN, a model and FPGA-based accelerator architecture based on weightless neural networks (WNNs). WNNs eliminate energy-intensive arithmetic operations, instead using table lookups to perform computation, which makes them theoretically well-suited for edge inference. However, WNNs have historically suffered from poor accuracy and excessive memory usage. ULEEN incorporates algorithmic improvements and a novel training strategy inspired by binary neural networks (BNNs) to make significant strides in addressing these issues. We compare ULEEN against BNNs in software and hardware using the four MLPerf Tiny datasets and MNIST. Our FPGA implementations of ULEEN accomplish classification at 4.0-14.3 million inferences per second, improving area-normalized throughput by an average of 3.6× and steady-state energy efficiency by an average of 7.1× compared to the FPGA-based Xilinx FINN BNN inference platform. While ULEEN is not a universally applicable machine learning model, we demonstrate that it can be an excellent choice for certain applications in energy- and latency-critical edge environments.
Peerreviewed: yes
Access type: Open Access
Appears in Collections:ISTAR-RI - Artigos em revistas científicas internacionais com arbitragem científica

Files in This Item:
File SizeFormat 
article_98470.pdf3,44 MBAdobe PDFView/Open


FacebookTwitterDeliciousLinkedInDiggGoogle BookmarksMySpaceOrkut
Formato BibTex mendeley Endnote Logotipo do DeGóis Logotipo do Orcid 

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.