Utilize este identificador para referenciar este registo: http://hdl.handle.net/10071/26678
Registo completo
Campo DCValorIdioma
dc.contributor.authorLabiadh, M.-
dc.contributor.authorObrecht, C.-
dc.contributor.authorFerreira da Silva, C.-
dc.contributor.authorGhodous, P.-
dc.contributor.authorBenabdeslem, K.-
dc.date.accessioned2022-12-19T12:25:43Z-
dc.date.issued2023-
dc.identifier.citationLabiadh, M., Obrecht, C., Ferreira da Silva, C., Ghodous, P., & Benabdeslem, K. (2023). Query-adaptive training data recommendation for cross-building predictive modeling. Knowledge and Information Systems, 65(2), 707-732. http://dx.doi.org/10.1007/s10115-022-01771-9-
dc.identifier.issn0219-1377-
dc.identifier.urihttp://hdl.handle.net/10071/26678-
dc.description.abstractPredictive modeling in buildings is a key task for the optimal management of building energy. Relevant building operational data are a prerequisite for such task, notably when deep learning is used. However, building operational data are not always available, such is the case in newly built, newly renovated, or even not yet built buildings. To address this problem, we propose a deep similarity learning approach to recommend relevant training data to a target building solely by using a minimal contextual description on it. Contextual descriptions are modeled as user queries. We further propose to ensemble most used machine learning algorithms in the context of predictive modeling. This contributes to the genericity of the proposed methodology. Experimental evaluations show that our methodology offers a generic methodology for cross-building predictive modeling and achieves good generalization performance.eng
dc.language.isoeng-
dc.publisherSpringer-
dc.rightsopenAccess-
dc.subjectTraining data recommendationeng
dc.subjectSimilarity learningeng
dc.subjectDomain generalizationeng
dc.subjectKnowledge transfereng
dc.subjectData-driven modelingeng
dc.subjectBuilding energyeng
dc.titleQuery-adaptive training data recommendation for cross-building predictive modelingeng
dc.typearticle-
dc.pagination707 - 732-
dc.peerreviewedyes-
dc.volume65-
dc.number2-
dc.date.updated2023-04-03T12:13:53Z-
dc.description.versioninfo:eu-repo/semantics/acceptedVersion-
dc.identifier.doi10.1007/s10115-022-01771-9-
dc.subject.fosDomínio/Área Científica::Ciências Naturais::Ciências da Computação e da Informaçãopor
dc.date.embargo2023-10-31-
iscte.subject.odsEnergias renováveis e acessíveispor
iscte.subject.odsCidades e comunidades sustentáveispor
iscte.subject.odsProdução e consumo sustentáveispor
iscte.identifier.cienciahttps://ciencia.iscte-iul.pt/id/ci-pub-90089-
iscte.alternateIdentifiers.wosWOS:000876838700001-
iscte.alternateIdentifiers.scopus2-s2.0-85140973896-
iscte.journalKnowledge and Information Systems-
Aparece nas coleções:ISTAR-RI - Artigos em revistas científicas internacionais com arbitragem científica

Ficheiros deste registo:
Ficheiro TamanhoFormato 
article_90089.pdf629,58 kBAdobe PDFVer/Abrir


FacebookTwitterDeliciousLinkedInDiggGoogle BookmarksMySpaceOrkut
Formato BibTex mendeley Endnote Logotipo do DeGóis Logotipo do Orcid 

Todos os registos no repositório estão protegidos por leis de copyright, com todos os direitos reservados.