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Abstract Predictive modeling in buildings is a key task for the optimal man-
agement of building energy. Relevant building operational data are a prerequisite
for such task, notably when deep learning is used. However, building operational
data are not always available, such is the case in newly built, newly renovated,
or even not yet built buildings. To address this problem, we propose a deep simi-
larity learning approach to recommend relevant training data to a target building
solely by using a minimal contextual description on it. Contextual descriptions
are modeled as user queries. We further propose to ensemble most used machine
learning algorithms in the context of predictive modeling. This contributes to the
genericity of the proposed methodology. Experimental evaluations show that our
methodology offers a generic methodology for cross-building predictive modeling
and achieves good generalization performance.

Keywords Training data recommendation · similarity learning · domain
generalization · knowledge transfer · data-driven modeling · building energy.

1 Introduction

Predictive modeling of energy consumption in buildings is important to define spe-
cific strategies for optimizing energy use within buildings. It therefore promotes
intelligent control and efficient planning of energy networks. Specifically, in the
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context of smart buildings, which are a fundamental part of smart cities, it is in-
creasingly prevalent to apply intelligent algorithms to produce predictive models
for anticipating and eventually responding effectively to specific events. One way
to perform predictive modeling of building energy is through machine learning
(ML) approaches [77, 8]. As energy data are time series in nature, time series
forecasting approaches are used [16]. These approaches are time efficient and fa-
cilitates the integration of buildings in smart systems [2]. Yet, accurate machine
learning models rely heavily on collecting relevant building operational data in a
sufficient amount, notably the case when deep learning is used [74, 47, 60].

In many cases, historical operational data are not available for training, such
is the case in newly built, newly renovated, or even not yet built buildings. With
improvements in energy efficiency of new and renovated buildings, predictive mod-
eling of energy consumption can not be based on their historical pattern anymore.
Moreover, in the field of energy assessment of buildings, it is common to verify the
energy efficiency of buildings before construction or renovation, based on predic-
tive models. In such cases, only a contextual description about the future building
and its design is available.

With the increasing availability of open data in various sectors, existing en-
ergy consumption data about other buildings may be obtained. The main idea of
this work is, therefore, to leverage data collected from multiple different source
buildings when no data are available on a target building. An important chal-
lenge arises when working with multi-source data, as large domain shift may exist
between different sources and also between each source and the target [80]. Con-
sequently, models trained on source-combined data from disparate sources can
interfere with one another during the training process, and generalize poorly when
applied to a new previously unseen target domain [94, 70]. This phenomenon is
referred to as negative transfer [86]. More precisely, within the context of building
energy modeling, energy consumption depends greatly on several contextual fac-
tors, such as the building’s use type (residential, industrial, or commercial), shape,
size and age [89]. Combining energy data from very disparate source buildings is
consequently counterproductive and will adversely impact the target performance
in the target building.

Proposed approaches addressing the aforementioned challenges fall into the
broader field of knowledge transfer, and more particularly domain adaptation and
domain generalization sub-fields. Domain adaptation [9, 72] uses labeled source
data as well as sparsely labeled or unlabeled target data to build an efficient
model for the target domain. Whereas domain Generalization (DG) [6, 62] re-
quires no data in the target domain and uses multiple source domains. Our work
lies somewhere between multi-source domain adaptation and domain generaliza-
tion areas of research. We aim to train accurate predictive models that perform
well on new previously unseen target domains via source data recommendation.
Source data recommendation allows to select operational data from most similar
sources to the target domain. Hence, we suppose that target metadata, which con-
sist in a contextual description of the target domain, are available beforehand to
guide the similarity-based selection process. These metadata provide a minimal a
priori knowledge about the unseen target building, and mainly consist of design
properties that are easy to access.

Conventionally, similarity measures that are used for source domains selection
are based on measuring the discrepancy between the distributions of source do-
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mains data and target domain data [22, 12, 73]. However, this is not suitable in our
case due to the unavailability of target domain data during training. In our work,
we propose to learn a metric space, in which source domain recommendation is
achieved by computing distances between learned representations of each building.
Hence, similarity learning techniques are leveraged to learn building-level repre-
sentations, so that similar buildings with similar energy consumption profiles are
mapped close to each other in the learned feature space, and dissimilar building
pairs are mapped far from each other. Representations are generated by training a
Siamese network [10, 59] on buildings’ contextual descriptions (metadata). In other
words, distance between learned domains representations will reflect similarity be-
tween their corresponding data, all while requiring only the domains metadata
to compute during test. Similarity learning has been proposed in the context of
domain adaptation in [68]. However, they assume that unlabeled target domain
data are accessible during training. Selecting most similar source domains with
the use of target domain metadata rather than actual data via metric learning, as
in our work, has yet to be explored.

The use of target metadata for cross-building knowledge transfer is as well
proposed in [58, 46] by computing Euclidean distances directly between metadata
vectors. In our work, we argue that mapping metadata vectors to new discrimi-
native feature space and thus learning task-specific representations, yields better
generalization performance. This allows to include information about domains data
in learned similarity metric.

For our experimental study, we perform predictive modeling of a target building
using similar source buildings data. A wide range of data-driven predictive mod-
els are proposed in the context of building energy modeling [38, 77, 74], namely
artificial neural networks [27, 5] and support vector machines [50, 37]. Convention-
ally, energy modeling requires multiple months to years of operational data on the
corresponding building, such as historical energy consumption data, weather data
and occupancy profiles, in order to build an accurate building energy consumption
model. A predictive model is, therefore, trained and evaluated on different data
sets sampled from the same building context. Our approach goes beyond such
methods and proposes to transfer knowledge across similar buildings. Arguably,
there is no single predictive model that works best for every test scenario. This
is known as no free lunch theorem [88]. Hence, we propose an ensemble learning
framework for the predictive modeling task. This allows to combine predictions
from several learning algorithms. Ensemble learning generally yields better gener-
alization performance than one contributing model. As this work aims to provide
a generic framework to allow predictive energy modeling for a diverse range of tar-
get scenarios, we propose a query-adaptive workflow. Thus, we model metadata
on target buildings as queries.

Briefly, this paper has the following contributions :

(1) We propose to perform query-adaptive transfer learning across buildings by
using metadata on buildings when no operational data available during train-
ing,

(2) we propose a novel knowledge transfer workflow for cross-domain predictive
modeling. We first select most similar buildings from multiple source build-
ings based on inter-building similarities, and then recommend them as training
data. An appropriate similarity measure is learned for the training data recom-
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mendation task. The similarity metric learning logic relies simultaneously on
contextual descriptions and energy use dynamics within buildings. However,
inter-building predicted similarity only requires the contextual description of
the target building during inference. Finally, energy time series data of the
recommended buildings are retrieved, and used to train a predictive model

(3) Our proposed framework is generic in nature to allow predictive modeling of
energy consumption for a diverse range of target buildings.

The remainder of this paper is structured as follows. Section 2 gives a brief
review of related works. Section 3 provides an overview on our proposed method-
ology and its main components. Section 4 depicts the experimental setup and
discusses experimental findings. Finally, in Section 5, we draw conclusions and
present suggestions for future research.

2 Related Works

Predictive modeling of building energy consumption Energy consumption predic-
tion in buildings is a fundamental task for the planning and operation of energy
networks. An accurate prediction of energy consumption at the customer level will
directly improve the efficiency of the entire energy system [60]. Building energy
consumption modeling is a complex problem that requires consideration to vari-
ous variables, namely economic and socio-demographic factors [28, 14, 30], weather
conditions, occupants’ behaviors [17], physical building characteristics, operation
of sub-level components such as HVAC and lighting systems [93]. Machine learning
methods have been proposed in the context of building energy prediction [77, 74].
ML employs collected existing data rather than relying upon complex physics
model of building. Most applied ML techniques in this context are artificial neural
networks (ANN) [27, 5] and support vector machines (SVMs) [50, 37, 38]. In recent
years, deep learning is widely adopted for predictive modeling tasks of building en-
ergy consumption, and becomes the state of the art when large amount of historical
data are available. Various deep learning models have been used, such as recur-
rent neural networks (RNNs) [43, 85, 44], convolutional neural networks (CNN)
or a combination between both [82, 41].In this work, we aim to effectively transfer
knowledge across different but contextually similar source buildings. This way, we
can apply machine learning models to buildings on which no data are available,
such is the case in newly renovated, newly built or not yet built buildings. Transfer
learning is recently being investigated in the framework of building energy predic-
tion [69, 29, 35, 83]. However, most of these works focus on domain adaptation, and
therefore on historical data scarcity rather than their total absence. For instance,
Fang et al. [25] combine a long-short term memory (LSTM) RNN model and do-
main adaptation using adversarial training to learn domain invariant temporal
features between source and target domains. Tian et al. [83] proposed a similarity-
based chained transfer learning method between smart meters. When no data are
available on the target building, Fan et al. [23] use source building data to optimize
the predictive model of the target building, i.e. for (1) feature extraction or (2)
weights initialization. Mocanu et al. [61] use reinforcement learning with deep be-
lief network for cross-building transfer learning. In our work, we perform transfer
learning based on source data and using an adaptive recommendation framework.
In addition, our methodology outputs a ready-to-use model for the target building
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rather than model components (e.g. feature extraction [23]). Labiadh et al. [46]
explore the suitability of transfer based on the selection of contextually similar
buildings. However, authors in [46] compute similarities as the Euclidean distance
directly between buildings contextual descriptions. In this work, we propose to
learn a task-specific similarity metric that captures discriminatory features. Au-
thors in [46] also focus on the definition of a microservice-oriented architecture for
implementing their methodology. In this work, the key contribution is rather the
proposal of a novel generic query-adaptive methodology cross-building predictive
modeling using similarity learning and ensemble learning.

Operational energy data are time series in nature. Time series forecasting ap-
proaches are therefore used. In this context, Oreshkin et al. [65] proposed a meta-
learning framework for univariate time series forecasting when no target data are
available. In our work, energy consumption data are multivariate due to the nu-
merous involved factors.

Transfer learning In contrast to classical machine learning systems, where we
dispose of a single data set and a single learning task, transfer learning [66] aims
to leverage previous knowledge acquired from different but related data domains,
or previously learned tasks to be re-used in a new learning system. In this context,
a domain is defined by the feature space and the marginal probability distribution
of the data set, whereas a task is defined by the label space and the objective
predictive function. Domain adaptation and domain generalization are the special
cases of transfer learning that study similar tasks but different domains. Both aim
to learn an efficient model to be used for the target domain by leveraging data
from the source domain(s). Domain adaptation addresses domain shift problem by
using labeled data from the source domain and sparsely labeled or unlabeled data
from the target domain. Domain generalization relies on multiple source domains
to build models that achieves good performance out-of-the-box in new domains
without requiring target data [49]. Domain generalization thus assumes no prior
knowledge on the target domain which is common in real scenarios. For example,
in the context of building energy consumption modeling, operational data are not
always available especially in the case of newly renovated or newly built buildings.
Here, each building setting may be considered as a domain with a different data
distribution.

Domain generalization Proposed domain generalization approaches generally seek
to capture knowledge from multiple source domains and exploit it to generalize
to new previously unseen target domains. There are mainly three domain gener-
alization approaches; (1) Data representation based methods that aim to learn a
generalized data representation for unseen target domains. Some works proposed
to learn a domain-invariant feature representation that minimizes the domain dis-
crepancy between multiple source domains [62, 32, 51], while others rely on the
assumption that a domain is composed of a domain-specific and a underlying
domain-agnostic parts. The goal is hence to learn to extract the domain-agnostic
part so that knowledge can be transferred to the unseen target domains [40, 20, 48].
(2) Ensembling methods [90, 57] that consist in training domain-specific models for
each source domain, and then optimally fuse them at test time. (3) Meta-learning
based methods [49, 52, 21] that present model agnostic training strategies to train
more robust models to domain shift. Similarly to our case, domain generalization
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methods assume that the target data are not accessible during training and aim to
leverage multiple source domains. However, we assume that a contextual charac-
terization of the target domain (metadata) is available to perform source domain
selection. We argue that a preliminary selection of the most similar domains is
necessary when multiple source domains are available, in order to effectively avoid
negative transfer [71].

Source domain selection Source domain selection has been investigated in the
context of multi-source domain adaptation [22, 13]. It mainly consists in selecting
source domains that are the most pertinent to the target domain, or assigning
a weight to each source domain depending on its similarity to the target do-
main. Duan et al. in [22] proposed a domain selection machine that is trained
on loosely labeled web images from disparate source domains. Proposed domain
selection relies on a weighted combination of source classifiers as well as a domain-
dependent regularizer for selecting most pertinent source domains. Chen et al. in
[13] proposes a re-weighting vector to match the source domain label distribution
to the unknown target one. Bhat et al. in [4] propose to select the best source
domains based on both H-similarity and complementary properties, and then to
iteratively learn a shared representation. Different domain similarity metrics are
proposed for domain selection or weighting, such as maximum mean discrepancy
[7], Kullback-Leibler divergence [81], f-divergence [64], Wasserstein metric [78] or
the Kolmogorov-Smirnoff statistic [45]. Even within one domain, domain adapta-
tion performance may depend heavily on the choice of data instances [12, 79]. Shu
et al. in [79] construct a transferable curriculum as a weighting strategy to elimi-
nate noisy and irrelevant samples from the source domain. Other related work in
the direction of data selection include using reinforcement learning to select data
during neural network training [24]. Domain selection and weighting primarily aim
to transfer knowledge from most similar sources among multiple source domains.
However, reviewed works require unlabeled data from the target domain to iden-
tify relevant sources. Instead, we are interested in domain selection with no target
data available during training. Hence, we exploit target domain metadata that are
easily accessible. Mancini et al. in [58] propose to use target domain metadata
and model domain dependencies using a graph in the context predictive domain
adaptation. Authors in [58] propose to build multiple domain-specific models on
each source domain, and then regress a model for the target domain based on
nearby domains in the graph. Instead of training multiple data-specific models, we
propose to initially select data from most representative source domains, and use it
to build a model for the target domain. Moreover, our methodology is generic and
easily extensible in the sense that it combines multiple learning algorithms simul-
taneously. Distance between domains in [58] is computed as a measure between
their respective metadata. However, small distance between domains metadata
does not necessarily imply a small distance between these domains data, on which
final task performance is based. Thus, we propose a similarity metric learning ap-
proach that capture similarities between domains data, all while requiring only
domain metadata during test to identify most similar source domains.

Yang et al. in [91, 92] proposed to exploit available metadata about domains
or tasks for respectively multi-domain learning and multi-task learning. Metadata
in [91] consisted of descriptors that semantically characterize the corresponding
domain or task, and that are fed into the model as additional input during training
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along with data. Instead of combining domain metadata and data, we propose to
exploit only target domain metadata for source data selection. Then combine data
collected from most similar source domains to train predictive models. This way,
we are able to address the domain generalization setting in which no target domain
data are accessible during training.

3 The Proposed Methodology

3.1 Overview

We propose a workflow for relevant data recommendation and reuse in cross-
building predictive modeling tasks. Our system main objective is to train accurate
building energy models for unseen target buildings based solely on their contextual
descriptions. Contextual description on the target building enables the system to
recommend most similar source buildings on which we dispose of operational data.
We present an overview of our proposed methodology in Figure 1.

Fig. 1: Overview of cross-building knowledge transfer workflow. (1) Training data
recommendation component uses metadata on the target building and source
buildings to identify most similar source buildings. (2) Predictive modeling com-
ponent proposes an ensemble of multiple predictive models trained on combined
recommended time series data.
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The system is responsible for building a representative training data set to the
target domain described in a query, and then use it to train an accurate predic-
tive model. A user query contains a contextual description of the target building
(metadata), such as the target building activity’s typology, year of construction,
location, number of occupants, etc. Upon receiving a query, our proposed workflow
is launched. Our methodology is composed of two main components.

1. Training Data Recommendation We propose a novel inter-building deep
similarity metric learning approach to build a recommendation system that
selects most similar buildings to a target building. Inter-building similarity
must rely solely on the target building metadata and not its actual operational
data, given the fact that we are interested in the non-availability of historical
operational data. However, predictive modeling depends mainly on such data
and therefore recommended buildings must have similar data patterns as the
target building. To mitigate this issue, we propose a Siamese network [10] based
recommendation system whose training logic relies simultaneously on metadata
and operational data within buildings. During inference, it only requires the
metadata about the target building. In brief, our deep similarity metric learning
approach will learn a task-specific building-level feature representation from a
building’s metadata, so that similar building pairs (having similar energy use
patterns) are mapped close to one another in the feature space, and dissimilar
building pairs are mapped far from one another. This is described in more
details in Section 3.2.

2. Predictive Modeling Once similar source buildings are identified by the
training data recommendation component, their corresponding multivariate
operational data are retrieved and combined to form a training data set for
predictive modeling task. Based on the loaded data set, we learn predictive en-
ergy models from energy consumption historical data and exogenous variables
(e.g. weather) of recommended source buildings. These building models will
later allow us to accurately predict future energy consumption of the unseen
target building described in the query. In this work, we propose an ensemble
learning technique to combine trained building models. This establishes the
generic nature of our query-adaptive methodology, and ensures better gener-
alization performance as described in Section 3.3

3.2 Training Data Recommendation

Training data recommendation allows to perform a preliminary contextual selec-
tion, which is required when generalizing the applicability of cross-building knowl-
edge transfer. Predictive model training will be therefore limited to data retrieved
from source buildings that are sufficiently related and similar to the target building.
The proposed training data recommendation component relies on a deep similarity
metric learning approach. We utilize labeled source building pairs to learn a task-
specific building-level feature representation (embedding) so that similar buildings
are mapped close to one another in the transformed feature space, whereas dis-
similar buildings are mapped far from one another. Figure 2 gives an overview of
the source buildings recommendation framework. Once trained, recommendation
system is executed at each reception of a query that contains metadata about the
target building.
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Fig. 2: Overview on the proposed buildings data recommendation workflow.

The main challenge lies in the definition of a similarity metric that, during
inference, requires only metadata about the target building (query). Metadata
may include building typology, size, orientation, construction year, location, etc.
However, predictive modeling mainly depends on operational historical data and
therefore recommended source buildings must have similar energy data as the
target building. To address this challenge, we propose a Siamese network based
recommendation system whose training logic relies simultaneously on metadata
and historical data within source buildings.

The Siamese network [10] is a type of neural networks that performs non-linear
metric learning. A Siamese network learns representations based on explicit infor-
mation about the similarity between pairs of objects. Siamese networks were first
introduced in [10] in the context of signature verification. A Siamese network has
two identical sub-networks that both share the same weights and structure. The
two sub-networks accept distinct inputs that are then joined via a loss function.
The goal is to obtain a representation that preserve the distance between simi-
lar entries. This way similar buildings can be matched and related through their
learned representations.

3.2.1 Deep Metric Learning with Siamese Network

Siamese networks is commonly trained using the contrastive loss function. Con-
trastive loss function [34] is employed to learn the shared parameters vector W
of a parametric mapping function GW so that semantically similar examples are
embedded close to one another, while semantically dissimilar examples are em-
bedded far form one another. We use the same contrastive loss function defined in
[34]. However, in this study, we work with continuous rather than binary labels.
Let X1 and X2 be the input pair. Let Y be its continuous corresponding label. Y
is close to 0 if X1 and X2 are deemed similar, and Y is close to 1 otherwise. In
our case study, X1 and X2 consist in the metadata vectors of respectively a build-
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ing 1 and a building 2, whereas Y consists in the scaled distance between these
two buildings’ historical operational data. The parametric distance function DW

to be learned between inputs X1 and X2 is computed as the Euclidean distance
between the outputs of GW , i.e. DW (X1, X2) = ∥GW (X1)−GW (X2)∥2. Let DW

be a shorthand notation for DW (X1, X2).
We use the general form of contrastive loss function L(W ) which is defined as

follows:

L(W ) =
P∑

i=1

L(W, (Y,X1, X2)
i) (1)

L(W, (Y,X1, X2)
i) = (1− Y )LS(D

i
W ) + Y LD(Di

W ) (2)

with (Y,X1, X2)
i is the i-th labeled training pair, P is the number of training

pairs, LS and LD are the partial loss functions for respectively a pair of similar
buildings or a pair of dissimilar buildings. LS and LD are designed so that DW

has small values for similar inputs and large values for dissimilar inputs, when
minimizing L with respect to parameters W [34]. LS and LD are defined as follows
:

LS(W,X1, X2) =
1

2
(DW )2 (3)

LD(W,X1, X2) =
1

2
max(0,m−DW )2 (4)

with m > 0 is a margin that is used to hold constraint, i.e. when two inputs are
dissimilar, and if the distance between them is greater than a margin, they do not
contribute to the loss. This basically ensures that no computations are wasted on
attempting to widen the distance between embeddings of dissimilar inputs, when
these are sufficiently distant. The contrastive term LD involving dissimilar inputs
is crucial in avoiding the loss reaches zero by setting embeddings GW to a constant
[34].

3.2.2 Data labeling with Dynamic Time Warping

Particularly in our study, we learn building-level embeddings so that energy-based
similar buildings are mapped close to each other in the learned feature space, and
energy-based dissimilar building pairs are mapped far from each other. As afore-
mentioned, the Siamese network learns feature representations via a supervised
metric-based approach with explicit pairwise similarity information. We therefore
need to represent our data set as pairs of buildings metadata vectors. For each
buildings pair, there corresponds an energy-based similarity measure [36] that re-
flects the similarity between their energy operational data.

Buildings’ energy operational data are time series in nature. As similarity mea-
sure, we therefore chose Dynamic Time Warping (DTW) distance [75]. DTW first
became well-known in the context of automatic speech recognition applications
[75], and is a widely recognized distance measure for time series data [39, 19].
Classical distance measures such as Euclidean and Manhattan distances are not
suitable when dealing with time series data due to time distortions and time shifts.
By contrast, DTW is able to measure similarity between two time series that may
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differ in duration and speed by aligning them. However, the major drawback of
DTW computation is the high time and space complexity (O(n2)). In energy-based
building data, the time series are relatively lengthy and often high-dimensional,
which makes the quadratic complexity nontrivial [56]. Therefore, we use an ap-
proximate DTW algorithm, called FastDTW. FastDTW [76] provides an accurate
approximation of DTW that has a linear time and space complexity (O(n)). After
computation, FastDTW distances between each pair of source buildings were nor-
malized to have values between 0 and 1, and used as labels to train the Siamese
network.

3.2.3 Similarity search

Once Siamese network is trained, we use the learned mapping function GW to
extract embeddings from all source buildings descriptions while offline. Source
embeddings are stored in a data store. Upon receiving a query, most similar source
building to the described target building are identified.

Let Xt be the input target building’s description. The trained recommendation
system computes distances between the target embedding GW (Xt) and all source
embeddings, such that:

DW (Xt, Xi) = ∥GW (Xt)−GW (Xi)∥2
for i = 1, 2, ..., S

(5)

where S is the number of source buildings. The recommendation system will
then identify the most similar r buildings via a simple nearest neighbors search
algorithm. r is an user-defined parameter.

3.3 Predictive Modeling via Ensemble Learning

Recommended time series data, that were retrieved from most similar source build-
ings, allow us to train an accurate predictive model for the unseen target building.
Predictive modeling has for objective to forecast future values of energy consump-
tion time series of the unseen target building.

In brief, the goal of time series forecasting is to predict future values of a target
variable yi,t for a given entity i at a given time step t [53]. An entity consists in a
logical collection of temporal information, such as vital signs of different patients in
healthcare, stock prices of different companies in finances, or power consumption
measurements of different buildings in the field of energy efficiency. Time series
forecasting models can be written as:

ŷi,t+h = f(yi,t−k:t,xi,t−k:t) (6)

with ŷi,t+h is the model prediction at time t+ h, h is a pre-defined forecast hori-
zon, yi,t−k:t and xi,t−k:t are past values of respectively the target and exogenous
variables over a look-back time window of size k, and f(.) is the learned prediction
function [53].

Usually, time series analysis includes univariate and multivariate cases. Uni-
variate time series refers to a sequential collection of observations indexed over time
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of a single variable, such as daily energy consumption of a building. Multivariate
time series is used when multiple time-dependent variables are involved and their
interactions are to be considered. Variables typically display dependency between
and within themselves. For instance, energy consumption in buildings is affected
by several time-variant exogenous factors such as weather conditions, human activ-
ities, holidays, etc. Our experimental work, therefore, deals with multivariate time
series. Nevertheless, our framework can deal with both univariate and multivariate
time series without loss of generality.

Traditionally, multivariate time series forecasting mostly relies on statistical
models like vector auto-regression (VAR) [55], and auto-regressive integrated mov-
ing average (ARIMA) [63] and its many variations. With the advances in com-
putational power and the increasing availability of data, machine learning-based
algorithms were developed to analyze and forecast time series data. Within the con-
text of building energy modeling, most applied ML techniques are SVM and ANN.
Support vector machine was applied to regression estimation, and was therefore
called support vector regression (SVR). SVR techniques employ kernels in order
to capture non-linear patterns in time series data. Commonly used kernels are the
polynomial kernel and the radial basis function kernel.

Over the past decade, deep learning has achieved remarkable success in a broad
range of fields, namely in the field of energy efficiency. Deep learning [33], as subset
of ML based on deep ANN, attempts to extract data representations with different
levels of abstraction using nonlinear transformations [3]. In multivariate time series
setting, several deep learning techniques were proposed [26], such as multi-layer
perceptron (MLP), convolutional neural networks (CNN), recurrent neural net-
works (RNN) and its variations such as long short-term memory (LSTM) [95, 11]
and gated recurrent unit (GRU). Multi-layer perceptron (MLP), also known as
fully-connected network, represents in the most basic form of artificial neural net-
works. A MLP is created by ”stacking” several fully-connected linear layers of
neurons, with non-linear activation functions in between them. The output of one
layer is the input of the subsequent layer. The output of the last layer gives the
final prediction of the learning model. Recurrent neural networks (RNN) [54] have
been historically proposed for sequence modeling tasks. It was therefore naturally
applied to time series forecasting. The reason behind the effectiveness of RNN
comes from its ability to capture past information from data, and use it to in-
form upcoming sequence steps. Two variants of RNN in particular, namely the
Long Short Term Memory (LSTM) and the Gated Recurrent Unit (GRU) have
significant success in several sequential data modeling applications. LSTM and
GRU offer the ability to capture long-term dependencies, while addressing van-
ishing/exploding gradients problem [67] often encountered in recurrent networks.
This is essentially achieved via special gates that determine which past information
should be passed and which should be forgotten [31].

Convolutional neural networks (CNN) have gained a lot of attention with their
applications in the fields of computer vision and pattern recognition. Given their
success, CNN were adopted to time series analysis tasks. CNN are typically com-
posed of a convolution layer, pooling layer and fully-connected layer. A convolution
is the process of applying filters that slide across the time series. A filter performs
an element-wise multiplication with the corresponding receptive field at each lo-
cation of the time series, followed by summing to obtain the output value in the
corresponding position, resulting in a feature map. When working with time series
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data, filters are one-dimensional (time) instead of two-dimensional (image width
and height) [26]. A pooling, such as average or max pooling, takes feature maps
as input and reduces their length by aggregating over a sliding window. The final
fully-connected layers map the extracted representation of the input time series
into final predictions.

In this work, we leverage four machine learning techniques; MLP, LSTM-RNN,
CNN and kernel SVR. Figure 3 depicts the architectures of investigated deep learn-
ing networks. During our experimental study, we empirically explore variants of
each models architecture to fine-tune its hyperparameters. We retain the architec-
ture variant that yields the best evaluation results.

In our work, we propose a generic query-adaptive framework that allows pre-
dictive energy modeling for a diverse range of target use cases. However, simply
comparing and selecting the model algorithm that yields best results for a subset
of use cases, will not necessarily work best for all possible cases that our framework
might encounter once deployed. This phenomenon is explained by the no free lunch
theorem [88]. We, therefore, propose to employ multiple learning algorithms, and
combine their predictions using ensemble learning techniques. Rather than finding
one hypothesis that best explains the data, ensemble learning consists on learning
a set of hypotheses, referred to as an ensemble, and later combining their predic-
tions to get final predictions for new data points [18]. Ensemble learning typically
yields better generalization performance than any of its individual trained models.

Stacked generalization framework Main ensemble learning techniques are bagging,
boosting and stacked generalization. In this paper, we propose to work with stacked
generalization approach presented in [87] and [84]. Unlike bagging and boosting
approaches, stacked generalization allows to combine heterogeneous models as in
our case. Two types of models are used in the algorithm of stacked generalization
: multiple base models, also called level-0 models, and one meta-model, also called
level-1 model. The main idea behind stacked generalization is to use the level-1
model to learn from predictions of level-0 models. In general, a stacked general-
ization framework yield better performance compared to the best level-0 model
[87].

The training time series data for level-1 model are obtained using walk-forward
cross-validation technique. Given a data set D = {(yi, xi), i = 1, ..., N}, where yi
is the target value and xi is the feature vector for the i-th instance, we split
the time series data into K folds {D1,D2, ...,DK}. Consider Dk and D(−k) to be
respectively the test and the training set of the k-th split of the walk-forward cross-
validation. Note that D(−k) only includes past observation with respect to Dk in
order to avoid data leakage. Given J different level-0 models {M1,M2, ...,MJ},
each Mjk is trained on D(−k) and predicts each sample xn in Dk. Let zjn stands
for the prediction of the model Mjk on xn [84]. By the end of the cross-validation
process, we gather the outputs of J level-0 models to form a data set as follows:

DCV = {(yn, z1n, z2n, ..., zJn), n = 1, 2, ..., N} (7)

DCV is the training set for the level-1 model Mmeta. In this study, we use a
linear regression model to determine y as a function of (z1, z2, ..., zJ). Final level-0
models Mj , j = 1, 2, ..., J are, on the other hand, trained using the data set D [84].
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(a) MLP

(b) LSTM-RNN (many-to-one)

(c) CNN

Fig. 3: Architectures of different predictive modeling models (multivariate input,
univariate output). (a) lag observations of multivariate time series data are com-
bined into one feature vector before being provided as input to the MLP. (b)
unrolled structure of the LSTM-RNN where lag observations taken one by one
as inputs. (c) using 1-D convolutional layers by passing multiple filters of shape:
number of time series variables × filter size.

The final prediction process employs level-0 models Mj , j = 1, 2, ..., J , jointly
with level-1 model Mmeta. Given a new test instance, level-0 models are executed
to get a vector of outputs {z1, z2, ..., zJ}, where each zj is an output of model Mj .
This vector is then provided as input for the level-1 model Mmeta, to get the final
prediction for the test instance [84].
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We summarize our proposed methodology in Algorithm 1, to recommend most
relevant training data and perform cross-building predictive modeling.

Algorithm 1: Proposed methodology for cross-building predictive mod-
eling.

Input: input query Xq

Input: Source buildings metadata set L = {Xs}s=1..S

Input: learned mapping function GW

Result: Meta-model Mmeta and base models {Mj}j=1..J

L′ ← L
I ← ∅
while size(I) < r do

Xnearest ← argmins∈{1,2,...,S} ||GW (Xq)−GW (Xs)||2
I ← I

⋃
Xnearest

L′ ← L′ − {Xnearest}
end
combine timerseries data of selected source buildings i ∈ I into one dataset D
split into K folds {D1,D2, ...,DK}
DCV ← ∅
for k ← 1 toK do

for j ← 1 to J do

train a base model Mjk on D(−k)

end
for xn ∈ Dk do
DCV ← DCV

⋃
{(yn,M1k(xn),M2k(xn), ...,MJk(xn))}

end

end
Learn meta-model Mmeta on DCV

for j ← 1 to J do
learn the final base model Mj on D

end

4 Experimental Work

4.1 Used Data Set

For the evaluation of our proposed methodology, we use a data set featuring 105
synthetic buildings with different characteristics. The data set is built as follows.
Initially, 21 base building models are available. Each building’s model was re-
parameterized to augment data using a random combination of design parame-
ter values. Randomly generated parameter values follow an uniform distribution.
On average, 4 augmented building models were obtained from each base building
model. The measurements were later obtained by automatic simulation of building
energy models. The 21 base buildings were held out to serve as test set for both
the recommendation component and the predictive modeling component. The re-
maining 84 buildings, obtained after augmentation, served as training set. Note
that the validation set and hyperparameter tuning are made from the training set.
Buildings were modeled and simulated using DesignBuilder; a building energy sim-
ulation software that uses EnergyPlus as simulation engine [15]. Building models
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Fig. 4: Overview on a subset of dataset characteristics using scatter plot. Namely,
building’s activity sector, total area (m2), occupation density (pers/m2), and ori-
entation (◦).

properties provide static descriptions about buildings, and comprise information
related to occupancy, total area, volume, building’s activity sector and typology,
location, orientation, etc. A subset of these properties is depicted in Figure 4.
As this work aims to select similar buildings for the predictive modeling task of
building energy consumption, some information about building thermal envelope
was included in the metadata about buildings. Namely, thermal conductivity and
volumetric heat capacity of building external wall, glazing-to-total-wall-area ratio,
and heating and cooling thermostat set points. In addition, we further characterize
buildings by their power generation units.

After simulation, energy consumption and generation measurements of one year
were recorded. This data cover several aspects, including heating, air conditioning,
and domestic hot water. In addition, per-site weather data were recorded. In this
work, we are mainly interested in heating energy consumption and several weather
variables. We work with one-day resolution data which were obtained by summing
the original data. Input data were also scaled between 0 and 1.

4.2 Training Data Recommendation

4.2.1 Model Training

17 features related to building activity’s sector and typology, location, number of
occupants, and thermophysical properties of exterior wall materials, are considered
in our study. Categorical data were one-hot encoded as a further pre-processing
step, yielding to 25 features in total. As representation learning model, we trained
a MLP, composed of two hidden layers both of size 128. A dropout rate of 0.1 was
applied to each of the hidden layer. The Rectified Linear Unit (ReLU) is used as
the non-linear activation function for hidden layers. The output layer consists of
a fully-connected layer of size 25. Note that MLP hyperparameters were chosen
empirically during validation.
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Fig. 5: Comparison between intra-list DTW distances for each evaluation case: (1)
ground truth where data are available on the target building, (2) with similarity
learning where only metadata are available on the target building where we used
our methodology to select the most similar source buildings, and (3) without sim-
ilarity learning where we directly compare target buildings metadata to available
source buildings metadata without using our proposed similarity learning frame-
work.

4.2.2 Experimental Results

For the evaluation of the training data recommendation component, we compare
recommended data from the selected source buildings (with similarity learning)
to data of the actually most similar source buildings (ground truth). Actually
most similar buildings were determined by taking the smallest DTW distances
between each source building data and the target building data. As such, we
compare between intra-list DTW distances: the predicted intra-list distance that
is the average DTW distance within the data of the recommended list of source
buildings, and the true intra-list distance which is the average DTW distance
between the data of the actually similar source buildings.

Experimental results show that our predicted intra-list distance is of 42.95Wh
as opposed to a true intra-list distance of 24.79Wh. For this, we set the number
of source buildings that are selected for each target building to 3 as an exam-
ple. As such, if each source building had one year energy-related data (as in our
case), predictive modeling would be based on a total of three years data. This is
particularly common for daily modeling tasks [1].

Moreover, we experimentally evaluate the motivation behind our proposed sim-
ilarity learning framework for the task of selection of the most similar source build-
ings. As such, this raises the question of why not simply select the source buildings
that have closest metadata vectors to the metadata data vector of the target build-
ings, and why would we require to go through a similarity learning framework.
For this, we compute the average intra-list distance of metadata vector-based
recommendations, and find a value of 163.91Wh. The proposed deep similarity
framework is therefore experimentally proven to be effective, and yields closer rec-
ommendations to ground truth. Figure 5 summarizes the experimental results for
each evaluation case.
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From experimental results, we notice that using a deep similarity learning
framework to learn task-specific metadata embeddings that capture similarity be-
tween buildings, yields good performance. This is particularly useful in the con-
text of a generic query-adaptive predictive model factory, as in this case. For in-
stance, the query-adaptive model factory is required to train predictive models on
data retrieved from recommended buildings. Predictive modeling results therefore
rely on the quality of source buildings recommendation. By dynamically learning
task-specific metadata embeddings, we are able to select the most similar source
buildings using raw building metadata. This avoids the need to thoroughly study
metadata features importance, and identify their different weights for the target
task. As such, not all features are equally important and contain information about
energy consumption (target task).

4.3 Predictive Modeling

4.3.1 Data Preparation

The goal of the model is to predict future daily heating energy consumption af-
ter a pre-defined time horizon. Input data are therefore structured as sequences
of length 7. Input time series consists of several variables, namely current week’s
heating energy consumption, air temperature, atmospheric pressure, solar irra-
diation (direct normal irradiance and direct horizontal irradiance), season, and
weekday/weekend index. The choice to work with air temperature, atmospheric
pressure and solar irradiation was made based on Pearson correlation feature se-
lection between weather variables and building energy consumption. Target value
is a real vector denoting the heating energy consumption at future time step af-
ter a pre-defined time horizon. In our experiments, we forecast one-step ahead
measurement.

For each building, we have one-year data. We use 70% of the data for training
(approximately nine months) and remaining data for testing. The whole data set
was scaled so all values will be between 0 and 1, using min-max normalization
algorithm.

4.3.2 Compared Methods

Evaluation are performed using four predictive models, which are a kernel SVR,
a MLP, a LSTM-RNN, and a CNN. Hereafter, we detail their respective hyper-
parameters. We empirically explored variants of each models architecture to fine-
tune its hyperparameters, and eventually retained the settings that yielded the
best evaluation results.

1. kernel SVR Regularization parameter C is fixed to 1. Epsilon ϵ = 0.1. We
use a polynomial kernel of degree 5.

2. MLP In case of MLP model, lag observations must be flattened into features.
Therefore, the input layer will correspond to a 28-dimensional feature vector
(sequence length×number of input features), whereas the output layer is com-
posed of a single neuron. MLP network is composed of one hidden layer of size
100.
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3. LSTM-RNN The input sequence is of length 7. The input layer accepts a
4-dimensional feature vector, whereas the output layer is composed of a single
neuron. Our network is composed of two hidden layers; one LSTM layer of size
8, and one fully-connected layer of size 16.

4. CNN Convolutional layer has a filter size of 2× time series width = 2× 4 and
a filter number of 64, with padding size 0. Max-pooling layer had a stride size
of 2× 2. Therefore, after the max-pooling layer, the dimension of feature map
is divided by 2. The fully connected layer is of size 50.

For MLP, LSTM-RNN and CNN models, the output layer consists of a fully-
connected layer with linear activation function. The Rectified Linear Unit (ReLU)
is used as the non-linear activation function for hidden layers. Fine-tuning of
weights is done using Adam optimization algorithm [42]. The learning rate is ini-
tially set as 10−2 and decayed by the cosine annealing schedule, in which learning
rate varies between 10−2 and 10−5. Weights initialization follows a normal distri-
bution with zero mean and standard deviation σ = 1, whereas biases are initialized
to zeroes. The gradients are back-propagated through batches of length 80. For the
training epochs number, we have fixed 1000 as the maximum number of epochs.
To avoid over-fitting, we have implemented an early stopping mechanism which
breaks the training loop when training cost does not improve on the training set
after 20 epochs.

4.3.3 Evaluation Metrics

We assess our proposed predictive models using three standard performance met-
rics; root mean squared error (RMSE), mean area error (MAE), and coefficient of
determination, also denoted as R2. RMSE computes the square root of the mean
squared difference between prediction and ground truth. MAE measures the mean
absolute difference between prediction and ground truth. R2 measures the pro-
portion of variance explained by the prediction model to the total variance in the
observed data. R2 normally ranges between 0 and 1, with 1 indicating the perfect
fit. Values may, however, fall outside the range of 0 to 1 if the predictive model is
worse than using an horizontal hyperplane that passes through the mean value.

RMSE =

√√√√ 1

N

N∑
i=1

(yi − ŷi)2 (8)

MAE =
1

N

N∑
i=1

|yi − ŷi| (9)

R2 = 1−
∑N

i=1(yi − ŷi)
2∑N

i=1(yi − ȳi)2
(10)

where yi denotes the true observed value of the i-th sample, ŷi denotes the
predicted value of the i-th sample. ȳ denotes the mean of the observed data. N
denotes the size of the data set.
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4.3.4 Evaluation with Different Scenarios

Our methodology was compared to two other case scenarios, which are namely
random selection and intra-domain cases. Random selection consists in the case
where training and test data were retrieved from respectively randomly selected
source and target buildings. Whereas intra-domain testing consists on training and
testing on the same building data, hence the same domain. Note that each case is
executed 21 times (without replacement), which corresponds to the total number
of held-out target buildings used for testing. This ensures reliable evaluation of
our methodology.

4.3.5 Experimental Results

The experimental results are shown in table 1. We provide average errors and stan-
dard deviations across all 21 executions, for each case scenario and each model.
In Figure 6, we detail results using a box and whisker plot which shows the
distribution of experimental results and skewness. Comparison shows that our
methodology exhibits better generalization results than both random selection
and intra-domain testing for all models. Note that our methodology has allowed
us to have robust models that perform better, on average, in cross-domain set-
ting than in intra-domain setting. This is due mainly to the fact that we are
training four disparate models with fixed hyper-parameters across all executions.
Hyper-parameters were therefore not fine-tuned and optimized for each training
set, as in a classical machine learning framework. Generally, a model with fixed
hyper-parameters is less likely to have optimal performance across all training
sets (across all executions), which are retrieved from different buildings. How-
ever, our methodology delivered stable near-optimal results in almost every trial.
Therefore, we believe that our proposed workflow offers a generic methodology for
cross-building predictive modeling by recommendation of training data retrieved
from similar buildings.

Given table 1 and figure 6, best generalization results were provided by kernel
SVR model. However, as noticed, averaged evaluation results are approximately
similar across studied prediction models. More detailed visualization of experimen-
tal results for all 21 executions is depicted in Figure 7. This plot shows that there is
no specific predictive modeling algorithm that outperform any other algorithm in
every scenario. Therefore, we propose to combine several algorithms using stacked
generalization technique. Ensemble model allows to have the best performance as
shown in table 1.

5 Conclusions and Perspectives

This paper addresses mainly the issue of non-availability of operational data in the
tasks of buildings energy predictive modeling. We propose a novel query-adaptive
two-step methodology for cross-building knowledge transfer. The first step is to
recommend most similar buildings in terms of energy use dynamics to a target
building, based solely on its metadata. For this purpose, an appropriate inter-
building similarity metric is learned using a Siamese network. The second step
is to load operational data from the recommended source buildings, and to train
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Table 1: Evaluation results. Bold font indicates best results obtained across each
evaluation metrics for each model and for each test case. ” ” stands for R2 values
that fall outside of the range of 0% to 100%.

Model Test Case
MAE (kWh) RMSE (kWh) R2 (%)

Mean Std Mean Std Mean Std

MLP
Random selection 12.89 6.95 16.87 8.70
intra-Domain 5.05 4.24 6.64 5.41 88.64 10.58
Recommendation 3.95 3.25 5.18 4.22 91.74 5.67

LSTM
Random selection 13.91 12.62 17.89 15.04
intra-Domain 6.84 5.14 9.60 7.22 74.11 22.87
Recommendation 3.93 3.67 5.23 4.72 91.26 6.03

CNN
Random selection 14.51 11.33 18.88 13.89
intra-Domain 10.13 10.00 13.58 12.79 56.87 46.73
Recommendation 3.77 3.50 4.92 4.51 92.23 5.72

SVR
Random selection 17.62 20.84 34.26 45.86
intra-Domain 8.69 7.57 13.37 10.99 62.80 16.72
Recommendation 3.21 3.20 5.70 5.39 92.37 6.08

Proposed
Ensemble

Recommendation 2.06 2.21 3.27 3.46 97.82 1.39

multiple predictive models. These models are combined together via stacking to
ensure a robust performance. Experimental results prove the efficiency of our pro-
posed methodology. Overall, we believe that this framework helps to model a wide
variety of target buildings, given its generic nature that allows it to dynamically
adapt to target buildings using queries.

However, we also believe that our methodology should not only be considered
as an answer to the challenge of cross-building energy modeling, but as a possible
solution to a broader range of applications. In its design, our methodology per-
forms cross-domain knowledge transfer for a specific task, by utilizing two types
of information; contextual description about entities (easily acquired metadata),
and training data (with respect to the task), in a way that it requires minimal
description and no training data about a new entity to model it. Expanding our
work to involve other case studies and applications will be interesting.

We assume in this work that source data amount is sufficiently large, and there-
fore source buildings that are similar ”enough” to a given target building are always
available. It is, therefore, interesting to evaluate the relevance of recommendations
of training data for the predictive modeling task. How we can quantitatively eval-
uate the recommendations is not evident and thus is worth exploring further. As
future work, we intend to extend our proposed training data recommendation com-
ponent to process larger and more heterogeneous contextual data descriptions on
available source buildings.
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