Please use this identifier to cite or link to this item:
Author(s): Duque, J.
Mendes, G.
Nunes, L.
de Almeida, A.
Serrão, C.
Date: 2022
Title: Automated android malware detection using user feedback
Journal title: Sensors
Volume: 22
Number: 17
Reference: Duque, J., Mendes, G., Nunes, L., de Almeida, A., & Serrão, C. (2022). Automated android malware detection using user feedback. Sensors, 22(17): 6561.
ISSN: 1424-8220
DOI (Digital Object Identifier): 10.3390/s22176561
Keywords: Machine learning
Malware detection
Mobilie security
Abstract: The widespread usage of mobile devices and their seamless adaptation to each user’s needs through useful applications (apps) makes them a prime target for malware developers. Malware is software built to harm the user, e.g., to access sensitive user data, such as banking details, or to hold data hostage and block user access. These apps are distributed in marketplaces that host millions and therefore have their forms of automated malware detection in place to deter malware developers and keep their app store (and reputation) trustworthy. Nevertheless, a non-negligible number of apps can bypass these detectors and remain available in the marketplace for any user to download and install on their device. Current malware detection strategies rely on using static or dynamic app extracted features (or a combination of both) to scale the detection and cover the growing number of apps submitted to the marketplace. In this paper, the main focus is on the apps that bypass the malware detectors and stay in the marketplace long enough to receive user feedback. This paper uses real-world data provided by an app store. The quantitative ratings and potential alert flags assigned to the apps by the users were used as features to train machine learning classifiers that successfully classify malware that evaded previous detection attempts. These results present reasonable accuracy and thus work to help to maintain a user-safe environment.
Peerreviewed: yes
Access type: Open Access
Appears in Collections:ISTAR-RI - Artigos em revistas científicas internacionais com arbitragem científica

Files in This Item:
File SizeFormat 
article_90292.pdf2,99 MBAdobe PDFView/Open

FacebookTwitterDeliciousLinkedInDiggGoogle BookmarksMySpaceOrkut
Formato BibTex mendeley Endnote Logotipo do DeGóis Logotipo do Orcid 

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.