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Abstract: The widespread usage of mobile devices and their seamless adaptation to each user’s needs
through useful applications (apps) makes them a prime target for malware developers. Malware is
software built to harm the user, e.g., to access sensitive user data, such as banking details, or to hold
data hostage and block user access. These apps are distributed in marketplaces that host millions
and therefore have their forms of automated malware detection in place to deter malware developers
and keep their app store (and reputation) trustworthy. Nevertheless, a non-negligible number of
apps can bypass these detectors and remain available in the marketplace for any user to download
and install on their device. Current malware detection strategies rely on using static or dynamic app
extracted features (or a combination of both) to scale the detection and cover the growing number
of apps submitted to the marketplace. In this paper, the main focus is on the apps that bypass the
malware detectors and stay in the marketplace long enough to receive user feedback. This paper uses
real-world data provided by an app store. The quantitative ratings and potential alert flags assigned
to the apps by the users were used as features to train machine learning classifiers that successfully
classify malware that evaded previous detection attempts. These results present reasonable accuracy
and thus work to help to maintain a user-safe environment.

Keywords: machine learning; malware detection; mobile security

1. Introduction

Smartphones, tablets, and other mobile platforms have long been integrated into
our daily lives due to the combination of portability, high computational power, Internet
access and usability, making them necessary tools in our society. These personal computing
devices, surpassing 14 billion units sold in 2020, have stimulated the development of
sophisticated mobile malware. McAfee detected more than 35 million malware samples
in 2019 [1].

With Android being the most used mobile operating system (OS), with roughly 76% of
the global market share as of November 2019 [2], due to its open-source approach and
a free-of-charge integrated development environment (IDE) that provides developers an
easier access to its platform. On the other hand, iOS, which has rigorous approval policies
and requires developers to use proprietary hardware and software to develop and publish
iOS apps, places a higher entry barrier to those wishing to develop for the iOS ecosystem.
In addition, the Android platform also allows its users to install apps from unverified
sources that may be available on the Internet and from third-party app stores.

The Android platform’s ease of use and developer friendliness, together with the fact
that these apps manage large volumes of sensitive and personal information (e.g., financial
or messaging apps), makes the Android mobile ecosystem an ideal target for malware
developers. In an informal view, malware is any software intentionally designed to cause
damage to a device or client. In 2013, a report showed that attackers could earn up to
USD 12,000 per month with mobile malware [3]. The rise of mobile malware can be, in part,
linked to the development of new technologies providing new access points and attack
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vectors for profitable exploitations [4]. In addition, an increase in black markets that
sell system vulnerabilities, malware source-code and malware development tools have
provided a more significant incentive for profit-driven malware [5].

The most predominant Android app stores have developed malware detection meth-
ods in order to filter through the published apps and block those deemed malicious to
protect its users. They achieved this by using either static or dynamic malware detection
methods, or a conjunction of both, to scan the app’s intent and behavior to determine if it
should be classified as malware or not. Unfortunately, all these methods have a failure rate
and can be bypassed. For example, static analysis detectors that rely on the simple analysis
of the application code are vulnerable to code obfuscation techniques that remove or limit
code access, such as string encryption or renaming methods and variables [6]. Dynamic
analysis, which focuses on observing the application behavior during runtime, remains
vulnerable to the use of native code (e.g., non-Java code compiled to run on an Android
CPU) or reflection (e.g., modifying methods, classes and interfaces during runtime) [7].

In some cases, certain malicious applications can detect emulated environments and
suppress their malicious behavior accordingly in order to avoid detection, as found by
Xu et al. [7]. Even with a combination of both methods, hybrid malware analysis still fails
to address these issues completely. Furthermore, as malware constantly evolves to find new
exploits and attack vectors, many malicious applications will bypass the detection strategies
mobile market operators put in place. Due to the growing risk of malware developers
bypassing safeguarding mechanisms, further and different mechanisms must be added
to the already existing malware detection and mitigation methods. An in-depth look into
the provided applications’ user feedback for apps that are later flagged as malware can
reveal trends that help identify these malicious applications that otherwise are able to
evade detection.

In this paper, we aim to study the effectiveness of user applications’ feedback when
turned into features to train machine learning algorithms for malware detection in the
Android environment. To devise the best approach for features and algorithm selection,
we apply several data analysis methods, data preprocessing techniques, and machine
learning approaches to train and evaluate the performance of different malware classifiers
for Android apps. This model became part of a broader system that already includes
several different components of pre-release verifications. Still, there is a minor number of
applications that, even after passing the internal system, are withdrawn by the QA team,
after being signaled by the users.

To accomplish this study, we used real-world user data provided by an app store,
Aptoide (https://en.aptoide.com), to mimic user traffic in a large-scale app distributor.
Aptoide is one of the largest Android app stores, acting as an alternative to Google Playstore,
with over 250 million unique active users and partnerships, 15,000 app developers and over
1 million apps available for users to download and install on their devices. This research
was proposed by Aptoide in order to improve their malware detection system and raise its
safety levels.

Even though malware is easily defined as software that can harm users, it is a difficult
concept to isolate in a tight definition. Some malware variants are clearly labeled, such as
those that steal the user’s private information. However, software exhibiting numerous
of advertisements can also be classified as malware. In this view, this paper considers
as ground-truth for the malware concept the software annotated as such by the Aptoide
professional experts. A more detailed view of this dataset can be found in [8].

The remainder of this paper is structured as follows. The related work is described in
Section 2. Section 3 describes the data used and how their features relate. Next, the method-
ology for building the machine learning model is described in Section 4, which pinpoints
the various forms of data preprocessing and machine learning algorithms used. Next,
the experimental setup section (Section 4.3) presents the experiments, as well as their
results and comparisons. Finally, the last section presents the conclusions and future work.

https://en.aptoide.com
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2. Related Work

Research on malware detection methods for Android is built on decades of traditional
signature-based, static and dynamic malware analysis research developed for personal
computers (PCs). Although traditional techniques such as virtualization and decompiling
are also used in mobile environments, the specifics of virtual machine (VM) architectures
and code packaging differ from their PC counterparts. So, traditional methods need to be
enhanced to deal with similar threats.

The majority of malware detection methods are based on the traditional signature
comparison. Using an extensive database of known malware signatures enables a program
to detect the presence of malware by matching its byte code patterns with those available
in the database. Unfortunately, this implies that users are not safe from malware that has
not yet been detected and added to these databases, or from malware that has slightly
changed their code signature. Therefore, the rapid growth of malware apps indicates that
this approach, although useful, tends to lag.

Other traditional methods, such as static and dynamic code analysis that examine the
app’s source-code and the products of its execution, respectively, also have their limitations
and drawbacks, as reported by Tam et al. [9]. The major drawback of these approaches is
the obfuscation techniques that remove or limit source-code access [6]. Other drawbacks
include the injection of non-Java code, network activity, and the modification of objects
at runtime [9].

Recently, some studies have pointed to the possibility of identifying malware based
on user feedback, but the focus is mainly on user textual user reviews. Hadad et al. [10]
used data similar to those used in this study (2500+ application reviews from a well-known
app store) and text mining techniques to analyze the review’s texts and create a training set
based on these characteristics. On the other hand, ref. [11] performed text summarization
and sentiment analysis using 17 applications’ reviews and, based on interviews, concluded
that mining the review texts can indeed help to understand the security issues found
in applications. The usage of user applications’ feedback may prove helpful regarding
malware detection, although very little work has been done in this direction. For example,
WHYPER [12] focused on processing app market metadata, such as application descriptions,
to examine whether the description provided any indication as to why the application
needed specific permissions. In addition, it also helped to conduct risk assessment of
mobile applications using natural language processing (NLP) techniques. Other works that
attempt some kind of mining of user feedback employ it for raising generic functional or
maintenance requests [13–16]. In a very recent survey, Ebrahimi et al. [17] also referred that,
so far, only a few works attempted to mine user privacy concerns from app store reviews.

Nonetheless, parallels can be drawn from other domains that have also felt the need to
analyze users’ feedback, such as hotels [18], restaurants [19], and e-commerce providers [19].
With app store users being able to post their feedback regarding their downloaded apps,
via ratings, comments, and other sorts of feedback, this can potentially be used to help
enhance the performance of machine learning classification methods by providing more
features to be considered in the analysis.

3. Data

Analyzing the relationship between user feedback information/rating and malware
can help identify patterns that indicate the presence of malware in a given application. This
section details the main associations between malware and user feedback that enable the
detection of malware patterns. The analysis is based on three months of user feedback
historical data provided by Aptoide and is composed of users’ ratings and flags, as well
as the QA team response. This dataset refers to 2332 applications from all kinds of mobile
application genres released between 1 August to 31 October 2019. The feedback data were
collected from the beginning of October 2019 till the end of January 2020. For each one of
the apps, the star ratings range between one (1), the lowest rating, and five (5), the highest.
The features used are as follows: the number of star ratings of each type it obtained from
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the users; the quantity of “Good” flags; the quantity of “Virus” flags; the quantity of “Fake”
flags; and the quantity of “Needs License” flags (Figure 1c). In addition, the Aptoide
security professionals also labeled each one of the involved apps as “trusted” or “critical”,
where “critical” means it was identified as malware.

(a) (b) (c)

Figure 1. Aptoide application, with app user reviews and the app flags classification. (a) Aptoide’s
app landing page. (b) Chosen app view. (c) App’s rating and flags.

The statistical distribution of the apps’ rating feedback is given in Table 1. Each sample
contains the counts of feedback from users for a given app. The minimum number for each
one of the features is always zero, and all apps have at least one rating of each classification
from 0 to 5. The mean column in Table 1 shows the average number of the ratings or flags
observed for all the apps. The maximum is the total count of a given rating or flag observed
on an app that exceeds the number of votes for that rating on any other app. The features’
distribution reveals a high degree of deviation from the mean and variation of ratings/flags
given by app users. This can be explained by the fact that only a small percentage of the
apps reach high levels of popularity, thereby receiving more feedback, whether favorable
or not. In fact, one can observe from these figures that most users are more inclined to give
feedback based on strong opinions, and that positive strong opinions predominate.

Table 1. Statistics regarding ratings and flags of the provided data set.

Mean Standard-Deviation Maximum

Rating 1 543.22 4071.58 37,049
Rating 2 146.46 1087.31 9859
Rating 3 1085.56 8213.47 74,968
Rating 4 555.01 3418.38 29,994
Rating 5 5100.14 38,542.78 353,411

Flag Good 6.72 41.52 1021
Flag Virus 3.48 14.33 244
Flag Fake 3.62 18.67 367

Flag License 9.13 110.99 2417

Assuming that the feedback is evenly distributed among all application types, a cor-
relation between all the features can be analyzed in advance. The relationship between
variables becomes evident by joining all the training data samples. Table 2 shows the
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correlation matrix of all features (ratings and flags) using the relationship between the
correlation coefficient matrix and covariance matrix. Table 2 shows that ratings express
a high degree of correlation between them, which is also valid to a lesser extent for flags.
However, correlation values between ratings and flags are relatively low. The correlation
between the lowest rating values, Rating 1 and Rating 2, is the highest, but since these have
different correlation values with the other variables, it was decided not to merge them to
make the most use of the limited data available. Since all these features show different
forms of correlation, they should be used to avoid information loss.

Table 2. Matrix showing the Pearson correlation between variables.

Ratings Flags

Rating 1 Rating 2 Rating 3 Rating 4 Rating 5 Flag Good Flag Virus Flag Fake Flag License
Rating 1 1.00 0.95 0.85 0.81 0.882 0.17 0.09 0.02 0.11
Rating 2 0.95 1.00 0.86 0.91 0.895 0.13 0.06 −0.01 0.06
Rating 3 0.85 0.86 1.00 0.66 0.961 0.170 0.068 0.000 0.073
Rating 4 0.81 0.91 0.66 1.00 0.755 0.06 0.04 −0.02 0.05

Ratings

Rating 5 0.88 0.90 0.96 0.76 1.000 0.17 0.07 −0.01 0.06
Flag Good 0.165 0.13 0.17 0.06 0.17 1.00 0.62 0.59 0.54
Flag Virus 0.09 0.06 0.07 0.04 0.07 0.62 1.00 0.65 0.41
Flag Fake 0.02 −0.01 0.00 −0.02 −0.01 0.59 0.65 1.00 0.40Flags

Flag License 0.11 0.06 0.07 0.051 0.06 0.53 0.41 0.40 1.00

Dimensionality Reduction

Another way to look at the data is by using dimensionality reduction techniques to
enhance visualization. In order to gain early insight into the data structure, T-distributed
stochastic neighbor embedding (t-SNE) was used. This is a nonlinear dimensionality
reduction technique that allows to check if the data are separable before the application
of classifiers. Several algorithm runs were tested with different parameter combinations,
namely, perplexity, number of components, and learning rate, to verify the parameter
impact and stability in results. Figure 2a,b shows one of the algorithm’s outputs. The chosen
examples are good representatives of most parameter combinations, using either two
(Figure 2a) or three components Figure 2b), respectively. Whilst Figure 2 shows the spread
clusters of mixed data, several concentrated clusters of malware-labeled samples can be
observed. This preliminary analysis shows that, using only user feedback, there are indeed
identifiable malware trends, even if using only three or fewer components.

(a) (b)

Figure 2. t-SNE projection views. (a) t-SNE 2D projection group formation. (b) t-SNE 3D projection
view with cluster separation.

4. Model Implementation

In this section, the implementation of the machine learning models is discussed. All
of these experiments were performed using Python’s scikit-learn package and XGBoost.
Several machine learning classifiers were used for comparison: XGBoost (XGB); random
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forest (RF); support vector machines (SVM); K-nearest neighbors (KNN). None of these
algorithms expresses prior assumptions about the data.

4.1. Data Processing

Before applying any of the previously mentioned methods, the dataset was prepared to
avoid model overfitting and biases to obtain more accurate results when applied to similar
data. With the assumption that malware applications do not last long enough in the market-
place before being detected and that, between the trusted applications, a small percentage
of top-rated apps that were available for a long time in the market and accumulated a lot of
user feedback in comparison to the majority of trusted applications, it was decided to drop
the top 1% of the data population for each of the variables (that is, 56 apps were removed).
This change reduced the dataset to 2276 app samples. The statistical distribution after
removal can be seen in Table 3. It can be observed that, despite the decrease in the number
of samples, the displayed statistics in Table 1 follow the ones depicted in Table 3 although
now presenting much lower standard deviations. Although the dataset now comprises
2276 samples, only 584 of these were labeled as malware and the remaining 1692 were
labeled as trusted. A random undersampling was applied to trusted samples to deal with
such imbalance. This allowed a ratio of 1:1 between malware and trusted applications,
providing a final training dataset of 1168 samples. Although the sample size was effectively
halved, this helps to avoid a trusted application bias.

Table 3. Distribution of ratings and flags after dropping the top 1% apps. Each sample represents.

Mean Standard-Deviation Maximum

Rating 1 72.34 246.73 2461
Rating 2 21.79 82.69 697
Rating 3 145.91 553.07 5761
Rating 4 176.76 950.82 11,375
Rating 5 718.54 2695.08 27,967
Flag Good 3.46 8.46 106
Flag Virus 2.29 4.16 38
Flag Fake 2.10 5.44 74
Flag License 0.98 3.59 48

Several feature preprocessing methods were selected in sequence for use with each
classifier to select the one that yielded better results on a case-by-case basis. Preprocessing
assures the best performance possible on distance-based algorithms, such as KNN and SVM,
and reduces the training time on those not impacted by sample distances. Classifiers were
also trained on the dataset without any preprocessing for comparison. The preprocessing
techniques used were as follows: no preprocess method for baseline comparison (NoPrep);
standard scaler (STD), which standardizes features by deducing the mean and scaling to
unit variance; normalizer (NORM), which normalizes features individually to the unit
norm, converting values to a 0 to 1 scale; Yeo–Johnson power transformer (PowerYJ) [20],
which applies a feature-wise power transform to make the data more Gaussian-like; and
a quantile transformer (Quant), that transforms features using a cumulative distribution
function to map the original values to a uniform distribution.

4.2. Classification Algorithms

After the data were processed, several classification algorithms were used to predict
a binary classification, discriminating between malware or trusted applications. The al-
gorithms used were support vector machine (SVM) that uses a kernel function to handle
nonlinearly separable data. In this case, due to the data distribution previously seen
(Figure 2), a radial basis function (RBF) kernel was used. The k-nearest neighbour algo-
rithm (KNN) checks the k-nearest sampled features using Euclidean distances. It classifies
an instance according to a plurality vote of its neighbors. Thirdly, the random forest (RF)
classifier, which belongs to the family of ensemble classifiers, operates by building a large
number of decision trees and returns the class corresponding to the mode of the classes of
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each of the individual trees. Finally, the extreme gradient boosting algorithm (XGBoost),
again an ensemble method, is also an optimized gradient boosting framework.

4.3. Experiments and Results
Experimental Setup

This section explains the process by which the optimized classifier results were ob-
tained. In order to optimize each of the previously mentioned classifiers, a framework was
developed to avoid the common pitfalls of overfitting and feature biases. Firstly, the data
were divided into two sets, 20% to approximate the actual error and the remaining 80% to
train and validate employing the stratified K-fold cross validation technique and setting
k = 10. The stratification is achieved by preserving the relative percentage of samples for
each one of the classes. Doing so ensures that each training set fold distribution remains
as close as possible to the one in the entire working dataset. This setting was run using a
random grid search to test 500 parameter combinations for each classifier. The model using
the more effective combination of parameters is returned under a reasonable timescale
without testing every possible combination in a regular grid search.

This framework was applied together with each preprocessing method mentioned
earlier, alongside with the application of the framework using a dataset without any
preprocessing for comparative analysis.

4.4. Results

In order to evaluate model performance, standard metrics were used for analysis and
comparison. Namely, the F1 score or the harmonic average of precision and recall, accuracy,
false positive rate, false negative rate, receiver operating characteristic (ROC)/area under curve
(AUC) score, as well as precision-recall (P-R) AUC. We used a weighted macro-average of
these individual metrics to measure each model’s overall classification performance and
adjust for classification biases. The total time taken for each model’s random grid search
was also considered to estimate the model’s training time efficiency.

Table 4 presents the results for all classification algorithm models over differently
preprocessed datasets. All algorithms present similar performance-wise results with minor
variations. SVM and KNN show better results with the PowerYJ preprocessed dataset,
with 0.75F1 score and 0.818ROC/AUC and 0.83ROC/AUC, for SVM and KNN, respec-
tively. Note that the KNN models’ training runtimes are relatively lower when compared
with the SVM’s training times, making it the most effective model time-wise, even though
the evaluation of KNN is bound to be slower than SVM. Comparatively, although present-
ing higher times for the training, ensemble algorithms XGBoost and RF achieved the best
results overall, with XGBoost coming out on top, both for accuracy, F1-measure and AUC.
Moreover, the training time is quite competitive for the higher results (using PowerYJ).

Notoriously, the PowerYJ preprocessed dataset, in general, shows a higher perfor-
mance when compared with the remaining preprocessing methods, and, as expected, when
compared to the no-preprocessing run. Table 5 highlights the difference between the best
methods, highlighting the preprocessing that enabled the models to achieve the top scores.
Table 5 also presents the mean of the cross-validation results and their standard deviation
(SD). The low standard deviation values for all models indicate a small variance between
each fold from the cross-validation procedure, suggesting that the algorithms could be
generalized for similar datasets.

Results indicate that (a) the classification analysis of users’ feedback is feasible and
that (b) near 72% of the malicious apps can be detected by using only given ratings and
potential flags. Thus, the results prove that using user’s feedback ratings and flags can
assist in identifying malware after it succeeds in bypassing the more traditional static and
dynamic malware analysis.
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Table 4. Comparison of model performance.

Model Preprocess Method F1 Accuracy FPR FNR ROC AUC P-R AUC Total Time Taken

XGBoost

NoPrep 0.770 0.775 0.136 0.314 0.867 0.835 1 h 40 m 15 s
STD 0.770 0.775 0.144 0.305 0.873 0.841 1 h 27 m 51 s
NORM 0.750 0.754 0.203 0.288 0.842 0.775 0 h 56 m 20 s
PowerYJ 0.790 0.788 0.144 0.28 0.863 0.808 0 h 36 m 36 s
Quant 0.770 0.771 0.136 0.322 0.869 0.839 0 h 23 m 17 s

RF

NoPrep 0.720 0.725 0.237 0.314 0.808 0.789 1 h 8 m 46 s
STD 0.710 0.712 0.212 0.364 0.804 0.789 3 h 49 m 1 s
NORM 0.730 0.733 0.314 0.22 0.81 0.771 3 h 26 m 28 s
PowerYJ 0.710 0.712 0.229 0.347 0.806 0.79 3 h 11 m 43 s
Quant 0.720 0.72 0.237 0.322 0.806 0.789 3 h 5 m 55 s

KNN

NoPrep 0.710 0.716 0.212 0.356 0.774 0.767 0 h 1 m 1 s
STD 0.700 0.699 0.254 0.347 0.771 0.744 0 h 1 m 9 s
NORM 0.700 0.703 0.246 0.347 0.796 0.777 0 h 1 m 11 s
PowerYJ 0.750 0.754 0.212 0.28 0.83 0.807 0 h 1 m 1 s
Quant 0.720 0.725 0.237 0.314 0.796 0.647 0 h 1 m 3 s

SVM

NoPrep 0.720 0.716 0.314 0.254 0.787 0.743 1 h 13 m 59 s
STD 0.600 0.614 0.542 0.229 0.721 0.716 0 h 33 m 23 s
NORM 0.700 0.699 0.246 0.356 0.79 0.771 0 h 25 m 56 s
PowerYJ 0.750 0.75 0.186 0.314 0.818 0.794 0 h 29 m 25 s
Quant 0.710 0.712 0.186 0.39 0.769 0.714 0 h 32 m 6 s

Table 5. Comparison of top model performance for each algorithm (SD—standard deviation).

Model Preprocess Method Statistic F1 Accuracy FPR FNR ROC AUC P-R AUC

XGBoost PowerYJ Mean 0.790 0.788 0.144 0.28 0.863 0.808
SD 0.045 0.029 0.022 0.032 0.036 0.27

RF NORM Mean 0.730 0.733 0.314 0.22 0.81 0.771
SD 0.040 0.038 0.048 0.33 0.048 0.042

KNN PowerYJ Mean 0.750 0.754 0.212 0.28 0.83 0.807
SD 0.033 0.031 0.046 0.037 0.055 0.049

SVM PowerYJ Mean 0.750 0.75 0.186 0.314 0.818 0.794
SD 0.049 0.023 0.022 0.051 0.053 0.048

5. Conclusions and Future Work

A still significant number of apps is still able to bypass the classic (static and dynamic)
malware detection techniques and become available in the marketplace for any user to
download and install. This paper studies the usefulness of user feedback on apps already
available in an actual Android marketplace to predict Android malware, using machine
learning classifiers. By using a robust methodology with different preprocessing tech-
niques and a random grid search parameter function, this paper establishes the expected
classification rates for the detection of malicious applications using algorithms trained
solely in user quantitative feedback patterns present in the users’ feedback data, that is,
without inspecting each of the applications’ code or runtime behavior. The best model was
trained with XGBoost and was able to surpassed other models in most of the metrics used
to evaluate performance for this task, even without any data preprocessing. Still, random
forest and distance-based algorithms such as KNN and SVM show interesting results in
the best scenarios.

Several avenues can be explored for future research. Firstly, we can study the best
way to integrate this tier of classification with pre-deployment, static and dynamic analysis.
Secondly, the application of natural language processing techniques to extract other features
from the comments users leave on the app store that may be relevant for training alongside
flags and ratings for each app is likely to increase precision and should be studied. Thirdly,
a broader timescale of user feedback data would enable an analysis of the evolution of the
models’ results to look for possible trends and shifts in app stores. More data availability
will allow for a comparison with different experimental setup parameters and different
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ratios between malware/non malware apps that better mimic real-world scenarios. Finally,
a study of model performance decay and automated model replacement is underway and
will certainly complement these results and allow for a fully automated system.
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