Please use this identifier to cite or link to this item: http://hdl.handle.net/10071/23244
Author(s): Madeira, R.
Nunes, Luis
Editor: Robles, R., Pichappan, P., Pichappan, P., and Tallon-Ballesteros, A. J.
Date: 2016
Title: A machine learning approach for indirect human presence detection using IOT devices
Pages: 145 - 150
Event title: 2016 11th International Conference on Digital Information Management, ICDIM 2016
ISBN: 978-1-5090-2641-8
DOI (Digital Object Identifier): 10.1109/ICDIM.2016.7829781
Keywords: Ambient intelligence
Internet of things
Human presence detection
Sensor fusion
Abstract: This paper describes the construction of a system that uses information from several home automation devices, to detect the presence of a person in the space where the devices are located. The detection however doesn't rely on the information of devices that explicitly detect human presence, like motion detectors or smart cameras. The information used is the one available in the Muzzley system, which is a mobile application that allows the monitoring and control of several types of devices from a single program. The provided information was anonymized at the source. The first step was to extract adequate features for this problem. A labeling step is introduced using a combination of heuristics to assert the likelihood of anyone being home at a given time, based on all information available, including, but not limited to, direct presence detectors. The solution rests mainly on the use of supervised learning algorithms to train models that detect the presence without any information based on direct presence detectors. The model should be able to detect patterns of usage when the owner is at home rather than rely only on direct sensors. Results show that detection in this context is difficult, but we believe these results shed some light on possible paths to improve the system's accuracy.
Peerreviewed: yes
Access type: Open Access
Appears in Collections:IT-CRI - Comunicações a conferências internacionais

Files in This Item:
File Description SizeFormat 
conferenceobject_42666.pdfVersão Aceite124,87 kBAdobe PDFView/Open


FacebookTwitterDeliciousLinkedInDiggGoogle BookmarksMySpaceOrkut
Formato BibTex mendeley Endnote Logotipo do DeGóis Logotipo do Orcid 

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.