Utilize este identificador para referenciar este registo: http://hdl.handle.net/10071/23244
Registo completo
Campo DCValorIdioma
dc.contributor.authorMadeira, R.-
dc.contributor.authorNunes, Luis-
dc.contributor.editorRobles, R., Pichappan, P., Pichappan, P., and Tallon-Ballesteros, A. J.-
dc.date.accessioned2021-09-29T13:47:14Z-
dc.date.available2021-09-29T13:47:14Z-
dc.date.issued2016-
dc.identifier.isbn978-1-5090-2641-8-
dc.identifier.urihttp://hdl.handle.net/10071/23244-
dc.description.abstractThis paper describes the construction of a system that uses information from several home automation devices, to detect the presence of a person in the space where the devices are located. The detection however doesn't rely on the information of devices that explicitly detect human presence, like motion detectors or smart cameras. The information used is the one available in the Muzzley system, which is a mobile application that allows the monitoring and control of several types of devices from a single program. The provided information was anonymized at the source. The first step was to extract adequate features for this problem. A labeling step is introduced using a combination of heuristics to assert the likelihood of anyone being home at a given time, based on all information available, including, but not limited to, direct presence detectors. The solution rests mainly on the use of supervised learning algorithms to train models that detect the presence without any information based on direct presence detectors. The model should be able to detect patterns of usage when the owner is at home rather than rely only on direct sensors. Results show that detection in this context is difficult, but we believe these results shed some light on possible paths to improve the system's accuracy.eng
dc.language.isoeng-
dc.publisherIEEE-
dc.relationinfo:eu-repo/grantAgreement/FCT/5876/147328/PT-
dc.rightsopenAccess-
dc.subjectAmbient intelligenceeng
dc.subjectInternet of thingseng
dc.subjectHuman presence detectioneng
dc.subjectSensor fusioneng
dc.titleA machine learning approach for indirect human presence detection using IOT deviceseng
dc.typeconferenceObject-
dc.event.title2016 11th International Conference on Digital Information Management, ICDIM 2016-
dc.event.typeConferênciapt
dc.event.locationPortoeng
dc.event.date2016-
dc.pagination145 - 150-
dc.peerreviewedyes-
dc.journal2016 Eleventh International Conference on Digital Information Management (ICDIM)-
degois.publication.firstPage145-
degois.publication.lastPage150-
degois.publication.locationPortoeng
degois.publication.titleA machine learning approach for indirect human presence detection using IOT deviceseng
dc.date.updated2021-09-29T14:45:12Z-
dc.description.versioninfo:eu-repo/semantics/acceptedVersion-
dc.identifier.doi10.1109/ICDIM.2016.7829781-
dc.subject.fosDomínio/Área Científica::Ciências Naturais::Ciências Físicaspor
iscte.identifier.cienciahttps://ciencia.iscte-iul.pt/id/ci-pub-42666-
iscte.alternateIdentifiers.wosWOS:000398535200026-
iscte.alternateIdentifiers.scopus2-s2.0-85014340399-
Aparece nas coleções:IT-CRI - Comunicações a conferências internacionais

Ficheiros deste registo:
Ficheiro Descrição TamanhoFormato 
conferenceobject_42666.pdfVersão Aceite124,87 kBAdobe PDFVer/Abrir


FacebookTwitterDeliciousLinkedInDiggGoogle BookmarksMySpaceOrkut
Formato BibTex mendeley Endnote Logotipo do DeGóis Logotipo do Orcid 

Todos os registos no repositório estão protegidos por leis de copyright, com todos os direitos reservados.