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Abstract—This paper describes the construction of a system 
that uses information from several home automation devices, to 
detect the presence of a person in the space where the devices are 
located. The detection however doesn’t rely on the information of 
devices that explicitly detect human presence, like motion 
detectors or, smart cameras. The information used is the one 
available in the Muzzley system, which is a mobile application 
that allows the monitoring and control of several types of devices 
from a single program. The provided information was 
anonymized at the source. The first step was to extract adequate 
features for this problem. A labeling step is introduced using a 
combination of heuristics to assert the likelihood of anyone being 
home at a given time, based on all information available, 
including, but not limited to, direct presence detectors. The 
solution rests mainly on the use of supervised learning algorithms 
to train models that detect the presence without any information 
based on direct presence detectors. The model should be able to 
detect patterns of usage when the owner is at home rather than 
rely only on direct sensors. Results show that detection in this 
context is difficult, but we believe these results shed some light on 
possible paths to improve the system’s accuracy. 

Keywords—ambient intelligence; internet of things; human 
presence detection; sensor fusion 

I.  INTRODUCTION 

Human presence detection is an ongoing challenge in 
several scenarios and applications, one of them is in ambient 
intelligence and home automation. This projects intends to 
create a system to be able to infer about presence using 
general information and statistics of usage and interaction with 
several types of devices.  

Ambient intelligence in computing refers to technology 
that is non-intrusively integrated in an environment, works 
without the need of intensive interaction from a user, and 
adapts, in an automated way, to the necessities of each user 
and context. The goal of this technology is the creation of 
complex systems with simple interfaces that enhance the 
quality of our daily lives [1] [2] [3]. 

Internet of Things (IoT) is the network of physical objects 
with electronics, software, sensors and connectivity 
capabilities that allow these devices to communicate with each 

other and to exchange information. By fusing the information 
from each device, and through the interaction of each device 
with its environment, we are able to build complex systems 
that may enhance our quality of life [4] [5] [6] [7] [8]. 

Home automation can be seen as an instantiation of the 
concept of ambient intelligence in which the environment we 
want to “make intelligent” is a residence, and the functions we 
want to control and monitor are those that control the devices 
that impact the house’s variables, such as temperature, energy 
consumption or humidity for example. 

Nowadays it is increasingly common to have connected 
devices in on our houses. [9] predicts that before 2020 the IoT 
will be comprised of more than 50 billion devices. Even today 
there are a lot of different devices available in the market for 
many different purposes, and the number is growing rapidly. 

A problem with these devices is that each manufacturer 
company has its way of communicating and programming its 
device. Muzzley is one of the current attempts to integrate all 
devices by providing a mobile application and a platform that 
allows for the interaction with an ever growing number of 
different devices, independently of their brand. Among other 
features the application gives the user the possibility to create 
programmed rules with triggers and consequences. One useful 
trigger (or part of many condition triggers) is the proposition 
“if someone is at home do … ”. 

The information about human presence on a domestic 
house is interesting for several reasons:  

 Allows the automation of several actions such as 
turn on/off devices when someone arrives, turn 
off when they leave.  

 May aid in some forms of intrusion detection.  

 Allows learning the user’s routines in a non-
intrusive way, since it is fundamental to know 
when a user is at home or when he is simply 
interacting with the devices remotely.  

 Can help detect behavior anomalies related to 
health conditions.  



Specific and reliable detectors are usually expensive for 
domestic use. The more affordable devices usually have 
limitations, for example a person sitting down on a couch will 
not be detected by a regular motion sensor. This project 
intends to detect presence by using information of objects not 
built specifically for this purpose.  

The idea is to process the data generated from interactions 
between the user, the devices and the platform in order create 
general metrics, not related to each device usage or 
characteristic, like for example average number of interactions 
per day, or number of interactions in the last half hour. These 
will then be used to train machine learning models for 
presence detection. 

If this proves to be a good method, it will allow to infer 
information about presence for users that don’t have presence 
sensors. And may increase the overall fidelity of houses 
equipped with presence detectors, for instance by discarding 
the presence of pets, which can trigger some presence sensors. 

II. RELATED WORK 

In recent years the increased general availability of 
computing technology, is leading to an increase accessibility 
of devices related to ambient intelligence and internet of 
things to the general audiences [3] [10] [11]. The main devices 
that can be found in common technology stores are light bulbs, 
capable of network connection and being remotely controlled. 
Sensors, like thermostats, carbon dioxide sensors, motion 
sensors. Also some houses are now built with home 
automation in mind [12]. 

This led also to an increase in research in the area. The 
Dream Green House [13] project, has the goal of creating the 
world’s most intelligent house, but also focusing on ecology. 
The project consists of a series of subprojects, each one 
focusing on one aspect to improve the house, for example, a 
module to control energy consumption, another for 
temperature control, luminosity control, water consumption 
monitor, etc.  

In 2013 [14] developed a presence detection system at a 
room or zone level for the house. This system infers about 
presence by using a large quantity of information gathered 
from several sources. The type of data used and its source may 
indicate presence explicitly, such is the case for pressure 
sensors placed in beds and chairs, or implicitly, in the case for 
example of the detection of network traffic coming from a 
PlayStation system. 

Another example of house that implements these 
technologies is the Gator House [15], which has the objective 
of creating a smart home that can help and monitor the daily 
life activities of the senior population or people with special 
needs. One of the most interesting contributions of the project 
is the creation of a model architecture for the middleware to 
control and coordinate all the systems implemented in the 
house. This model is structured in layers, the base layer has to 
do with the raw data produced by the devices, and then, 
progressively through the layers the system becomes more 
complex and abstract in the sense of the created information. 

Some devices available in the market, such as the Nest 
thermostat, already use information from several sources in 
order to infer about human presence. Nest for example uses 
temperature, carbon dioxide levels and noise levels for this 
effect. As stated before, this project is not about using specific 
sensors or information, it is about indirectly doing presence 
detection through the interaction messages and their statistics 
for generic users with different devices and routines. This is 
what makes this a unique project.  

III. PROCESSING THE DATA 

A. The Muzzley Platform 

The system generates data related to the interaction 
between the user application and the platform, and then 
between the platform and each device manufacturer systems. 
In order to be able to cope with the large diversity of devices 
and information created by these interactions, the application 
has a large and well defined ontology that coordinates the way 
each device transmits its information. 

The messages from a “raw” data-set gathered from the 
platform will be divided in three types: 

user_reads: these messages concern direct requests from 
the application or the platform to a specific device in order to 
obtain the value of one of its properties. These requests might 
be triggered by the user, for example opening the application, 
or by the rules module if it needs to know a property at a 
certain time.  

user_writes: these messages are instructions, generated by 
the user or a rule, to a device in order to change the value of 
one of its properties. They are very similar to the user_reads 
messages, however these have some fields more dependent on 
the schema of the message. For example, if the message is for 
an RGB light bulb to change its color than it will have the 
additional r, g and b fields. 

device_updates: these messages are quite different from 
the other types, they are sent throughout the platform and 
inform the concerned entities, a user application for example, 
about the value of a device property. Because they inform the 
value, these messages have, like the user_writes, more fields 
depending on the type of schema. 

Regardless of type, a message will have ids and names 
related to the device hierarchy that serve as a way to organize 
the devices and their components to be able to manage them. 
These are: profile id, linking to a brand of light bulbs for 
example, and component id, one of the specific light bulbs 
sold in a set, and property id, in this case the brightness of a 
specific bulb. The message also contains a timestamp field. 

B. Plugins developed 

The provided anonymized datasets are then processed by 
plugins that extend an internal program suited to work with 
this data created for this project. These will generate 
information for the machine learning algorithms.  

devicesPerUser: this plugin iterates through user_reads 
and writes datasets and creates information per user about its 
devices, such has: number of devices, number of components, 
the complete device hierarchy of that user, different schemas 



used by these devices. For this it uses the ids present on the 
messages  

loadEventsToDB: the main idea of this plugin is to insert 
into a database all of the events of all types of datasets, so that 
it is easy create other information in other plugins by query. 
The algorithm also maps the device_updates messages to 
anonymous users using information from the devicesPerUser 
plugin, since these messages have no information about user. 
It registers action times using the message timestamp and the 
user time-zone, if available. And marks which update occurred 
without a previous user_write message, because this indicates 
that either it changed by itself, ex: the value of a thermometer, 
or it changed because of a manual interaction. This is done by 
comparing update messages to previous write messages within 
a time-frame.  

presenceFromDevices: this plugin is responsible for 
collecting events that can give us information about presence. 
This information is a mixture of heuristics, for example 
device_updates from light bulbs that were independent, this 
probably means that someone is home (notice that the detected 
presence can be someone that is not the application owner). 
This also collect other sensor information, for example 
cameras with motion sensors. The events are divided in two 
types: continuous, gathered from devices like alarms whose 
state provides a continuous source of presence information, 
and non-continuous like motion sensors or light bulb 
interactions which have a time window, heuristically defined, 
in which the occurrence of the event is relevant. 

interactionStatsPerUser: this plugin is responsible for 
creating usage statistics for each user with different levels of 
granularity, taking into account the type and time of day. The 
metrics are created by iterating through the stored messages 
and counting events and time passed, then averages are 
calculated using this information. Examples of created metrics 
are: average number of update messages per hour, average 
number of write messages per weekend day, average number 
of independent update messages per hour on a weekday. 

createMLDatasetGenStats: this plugin generates more 
immediate metrics. It will also iterate through the stored 
messages and depending on the chosen mode it will either 
create an entry per message, or an entry per window of time. 
The metrics on this entry are for example: number of write 
messages in the past 5 minutes, number of independent 
updates in the past half hour. This algorithm also creates 
information about presence per entry by querying the 
presenceFromDevices collection for events relevant to the 
time of the entry. 

createCSVsForPresence: this plugin uses the information 
generated previously to create csv files that will later be used 
with machine learning algorithms. It creates a line of csv per 
createMLDatasetGenStats plugin entry, writing in the file the 
information generated in this plugin plus other like the ones 
present in the interaction stats and devicesPerUser. It can 
create datasets with some variations such as: only writing in 
the csv lines of users with more than X devices, only using 
information presence from continuous sources, among other 
options. 

IV. CREATING THE MACHINE LEARNING MODELS 

The first test was of a small anonymized dataset, gathered 
from 3 days of interactions. The generated csv size ranged 
from 2MB to 300MB depending on pre-processing options. 
This data was from roughly 900 users, but depending on the 
mode only that data from some users could be used. 

The classifiers were trained in Weka [16] and the results 
obtained in this phase showed that the approach is interesting 
but more exploration was needed. Tests were made using 
regression, treating presence as a continuous values, and 
discretizing the presence value gathered in the plugins into 
two or more classes. An example result, gathering information 
only from continuous sources, with only two classes to 
predict, which are presence and unknown, using a j48 decision 
tree, the Weka implementation of the C4.5 algorithm [17], and 
10-Fold cross validation as evaluation method, we were able 
to achieve overall 99% of correctly classified instances. But 
for the same case, using non-continuous sources for presence 
gathering the results for the presence class were below 50%.  
Feature selection algorithms were also used to eliminate most 
features, since with the described plugins over 300 features are 
generated but only 30 to 60 remained after applying feature 
selection filters. This step helped training the classifier faster, 
with better precision and to understand what information was 
more useful. 

After this phase, a larger version of the problem was 
tackled and at this point Weka was replaced by Scikit-Learn 
[18] 

A. Scikit-Learn Experiments 

The first part of the experiment (feature and parameter 
selection) uses Pandas [19] to read and transform the data to 
matrices supported by Scikit-Learn. The presence attribute is 
discretized to {0, 1} meaning unknown or presence. Feature 
selection is done choosing an algorithm from these: 
SelectKBest, with Chi2 [20] as the scorer function, 
LinearSVC [21] or a Random Forest [22], the last two cases 
are classifying algorithms which in their normal operation will 
rank the features in terms of their contribution to 
classification, so they can be used in this feature selection 
phase.  

The next phase is parameter search, the classifier chosen, 
in this case a Random Forest [22], is fitted and tested to see 
which options for the classifier best suit the problem. This 
process also has 3 modes, the first is random parameter search, 
the second grid search and in the last both types of searches 
are used. Parameters are scored by testing the data with a 3-
fold cross validation, and the best parameters are chosen. 
Finally the algorithms will be evaluated with a 5-fold cross 
validation for reference. This process is done with a small 
subset of the data due efficiency constraints.  

The second part of the experiment uses the previous 
selected features and parameters to load a bigger part of the 
dataset and train and test on this new data. A 10-fold cross 
validation is used, generating the classification reports that 
will be presented in this paper. 



The full dataset used contains 1 month of data, ranging, 
roughly, between 1 GB and 15GB, depending on the 
preparation in the plugins step. Differences in the pre-
processing will be detailed in the next section.  

B. Experiments made 

Due to the way the instances are tagged, the experiments 
are mainly divided between excluding and not excluding the 
presence events in the calculated metrics. In the “excluding” 
scenarios events that were used to calculate presence 
information are not taken into account in the counts and 
averages calculated by the plugins. This is done using an 
identifier that uses profile, component and property id. So no 
brightness events of a light bulb will enter the statistics if the 
brightness information of this bulb was used to gather 
presence information for a user in the heuristic labelling step. 
But if, for example, the color-RGB property of this bulb 
wasn’t used for presence labeling, the events related to this 
will enter the statistics. As stated before, the gathered presence 
value from the plugins was discretized to 0.0 or 1.0, and will 
be referred as unknown and presence from now on. This is a 
very strict procedure since it throws away information that, 
after pre-processing and merging with other information, can 
hardly be used to infer presence directly. 

The first experiments yielded very good results, over 0.9 
precision and recall was achieved for both classes, excluding 
and not excluding labeling information. However, after further 
exploration we realized the algorithm was using the metrics to 
detect each user almost individually and then classifying 
according to if the user has mostly presence tagged instances 
or unknown ones. This was possible because users with 
devices that contribute with continuous type information had 
much more presence tagged instances than the ones which 
only had non-continuous type information. 

This led to the conclusion that for now the information 
gathered from each separated type of event: non continuous 
sources, ex: light bulbs, and continuous sources, for example: 
alarms shouldn't be all gathered in the same dataset. So the 
experiments were repeated with different types of datasets. 

Results will now be presented stating the difference 
between them, depending on whether events were excluded or 
not, and which type of events were used to gather presence 
information from. These results are obtained with the process 
previously explained in the Scikit-Learn Experiments section 
with the difference that the parameter search phase was not 
done due to time constraints. 

In the first new experiment events were not excluded and 
only presence gathered from non-continuous events was used: 

TABLE I.  CLASSIFICATION REPORT USING NON-CONTINUOUS EVENTS 
FOR LABELING NOT EXCLUDING ANY INFORMATION FROM METRICS 

classes precision recall f1-score support 
unknown 1.0 1.0 1.0 4979672 
presence 0.87 0.49 0.62 20330 
avg/total 1.0 1.0 1.00 5000002 

 

 

TABLE II.  CONFUSION MATRIX FOR THE SAME SCENARIO OF TABLE I 

actual classes 
classes predicted 

unknown presence 

unknown 4978142 1530 

presence 10427 9903 

 

As with the initial experiments, we have now removed the 
events that were used to collect presence information from the 
statistics and repeated the experiment with the previous 
dataset: 

TABLE III.  CLASSIFICATION REPORT USING NON-CONTINUOUS EVENTS 
FOR LABELING AND EXCLUDING INFORMATION USED FOR LABELING FROM 

METRICS 

classes precision recall f1-score support 
unknown 1.0 1.0 1.0 4980543 
presence 0.54 0.14 0.22 19459 
avg/total 0.99 1.0 1.00 5000002 

 

TABLE IV.  CONFUSION MATRIX FOR THE SAME SCENARIO OF TABLE III 

actual classes 
classes predicted 

unknown presence 

unknown 4978246 2297 

presence 16726 2733 

 

Then the same experiment was done but this time a 
minimum of devices, schemas and interaction per day was 
enforced. And then a maximum limit of these features was 
used. So only users who fulfilled these conditions were in the 
dataset. This tested if the model would behave better when 
there was information from more or less devices available. 
The results weren't better, recall dropped to 0.12 and 0.13 
respectively. Precision however climbed to 0.60 in the case of 
the maximum devices, which suggests the algorithm is more 
certain of presence cases with less devices. 

In order to use the rest of the presence information, 
datasets were created separately for users who had continuous 
information: 

TABLE V.  CLASSIFICATION REPORT USING CONTINUOUS EVENTS FOR 
LABELING AND NOT EXCLUDING ANY INFORMATION FROM METRICS 

classes precision recall f1-score support 
unknown 0.72 0.62 0.67 412795 
presence 0.83 0.89 0.86 884421 
avg/total 0.80 0.80 0.80 1297216 

 

TABLE VI.  CONFUSION MATRIX FOR THE SAME SCENARIO OF TABLE V 

actual classes 
classes predicted 

unknown presence 

unknown 257197 155598 

presence 100776 783645 

 



These experiments were then reproduced excluding the 
events used to gather presence information, but results were 
very similar. Finally, we experimented a set with users who 
had both types of information and this experiment achieved 
good results, similar to the previous presented in table V. 

After this, all these variations were tested again but with 
the difference that each line of the csv was created per event 
instead of using a time window. In the non-continuous dataset 
this approach lowered the scores overall but raised recall in 
some cases. For the continuous cases this approach also 
lowered the obtained scores. Finally, for the dataset of users 
who had both types of information, the results remained 
practically the same. 

The number of users present in each dataset varied greatly, 
with the non-continuous having approximately 1200 users 
depending on the case, and the continuous 200. The difference 
in number of instances of each class was also very big, mostly 
just the continuous dataset had more lines of the presence 
class. 

In order to cope with these differences between number of 
instances of each class, new experiments for the most 
interesting cases were done adding an additional random 
down-sampling phase to the process in order to have balanced 
datasets. Scores improved significantly. Results for the 
window-based, non-continuous information and excluding 
events follow: 

TABLE VII.  CLASSIFICATION REPORT FOR WINDOW BASED, USING NON-
CONTINUOUS EVENTS FOR LABELING, EXCLUDING INFORMATION USED FOR 

LABELING FROM METRICS, AND WITH RANDOM DOWN-SAMPLING 

classes precision recall f1-score support 
unknown 0.74 0.81 0.78 19459 
presence 0.79 0.72 0.76 19459 
avg/total 0.77 0.77 0.77 38918 

 

TABLE VIII.  CONFUSION MATRIX FOR THE SAME SCENARIO OF TABLE VII 

actual classes 
classes predicted 

unknown Presence 

unknown 15762 3697 

presence 5411 14048 

 

 

The event based approach was also better with down 
sampling, but in this case recall for the presence class was 
around 0.5: 

TABLE IX.  CLASSIFICATION REPORT FOR EVENT BASED, USING NON-
CONTINUOUS EVENTS FOR LABELING, EXCLUDING INFORMATION USED FOR 

LABELING FROM METRICS, AND WITH RANDOM DOWN SAMPLING 

classes precision recall f1-score support 
unknown 0.65 0.93 0.77 168323 
presence 0.88 0.50 0.64 168323 
avg/total 0.77 0.72 0.72 336646 

 

 

TABLE X.  CONFUSION MATRIX FOR THE SAME SCENARIO OF TABLE IX 

actual classes 
classes predicted 

unknown presence 

unknown 157047 11276 

presence 83495 84828 

  

Finally, these classifiers trained using down sampling were 
tested with the full data for each case, without cross-
validation, in order to see the full capabilities of this 
technique. In the window based sets recall values obtained 
were close to their counterpart experiments without down 
sampling training, but in precision for the presence class 
dropped to 0.08. Because of the nature of the problem, the low 
precision scores might be unknown class instances that 
actually correspond to presence cases but we simply don't 
have information to tag them as such. These experiments may 
suggest that different classes or ways to rate the classification 
could be explored. 

Despite these differences in the datasets and the results 
obtained, the many experiments gave us an insight to the 
problem. As expected the algorithm as a hard time identifying 
possible presence for the non-continuous case. Even using 
information from events that were used to determine the user’s 
presence and build the training-set’s labels, is not a guarantee 
of a high accuracy, which means it probably makes sense to 
continue counting these in the metrics instead of handicapping 
so heavily the training data just to assure the model 
generalizes the rule. 

Work so far has focused mainly on pre-processing and 
exploration of standard approaches to the problem with these 
experiments. We also intended to assess the impact of using 
all or parts of the information. Future work will aim at 
creating more sophisticated features and other ways to 
improve the prediction. The presented results were obtained 
not using parameter search for the classifiers, because of time 
constraints, so that extra step can also help. Also, the creation 
of a specific hand-labeled data set (provided by volunteers) 
could greatly improve the confidence in the results. 

V. CONCLUSIONS 

This paper presented a system for human presence 
detection in a generic ambient intelligence context. The 
system can be further improved but still it performs well in its 
current state and shows a promising capability for detection 
using unspecific data from several IOT devices. In order to 
create the system an extensive pre-processing phase was 
applied to anonymized data gathered from a real application 
(the Muzzley platform), generating metrics for each new 
example. Datasets were labeled with presence information 
inferred by heuristic methods. The main challenges of the 
project were the pre-processing needed, the diversity of 
devices that interact with the platform, the creation of 
adequate features and not having explicit presence 
information. Although many results obtained have a low 
precision and recall for the presence class, the approach 
described provides insights to build upon. Presence detection, 
and, possibly in the future, activity detection, or household 



number determination, are very important challenges to 
ambient intelligence and hopefully this project will help shed a 
little light on the current possibilities with these devices and 
technologies. 
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