

Repositório ISCTE-IUL

Deposited in Repositório ISCTE-IUL:
2021-09-29

Deposited version:
Accepted Version

Peer-review status of attached file:
Peer-reviewed

Citation for published item:
Madeira, R. & Nunes, Luis (2016). A machine learning approach for indirect human presence
detection using IOT devices. In Robles, R., Pichappan, P., Pichappan, P., and Tallon-Ballesteros, A. J.
(Ed.), 2016 Eleventh International Conference on Digital Information Management (ICDIM). (pp. 145-
150). Porto: IEEE.

Further information on publisher's website:
10.1109/ICDIM.2016.7829781

Publisher's copyright statement:
This is the peer reviewed version of the following article: Madeira, R. & Nunes, Luis (2016). A
machine learning approach for indirect human presence detection using IOT devices. In Robles, R.,
Pichappan, P., Pichappan, P., and Tallon-Ballesteros, A. J. (Ed.), 2016 Eleventh International
Conference on Digital Information Management (ICDIM). (pp. 145-150). Porto: IEEE., which has been
published in final form at https://dx.doi.org/10.1109/ICDIM.2016.7829781. This article may be used
for non-commercial purposes in accordance with the Publisher's Terms and Conditions for self-
archiving.

Use policy

Creative Commons CC BY 4.0
The full-text may be used and/or reproduced, and given to third parties in any format or medium, without prior permission or
charge, for personal research or study, educational, or not-for-profit purposes provided that:

• a full bibliographic reference is made to the original source

• a link is made to the metadata record in the Repository

• the full-text is not changed in any way

The full-text must not be sold in any format or medium without the formal permission of the copyright holders.

Serviços de Informação e Documentação, Instituto Universitário de Lisboa (ISCTE-IUL)
Av. das Forças Armadas, Edifício II, 1649-026 Lisboa Portugal

Phone: +(351) 217 903 024 | e-mail: administrador.repositorio@iscte-iul.pt
https://repositorio.iscte-iul.pt

https://dx.doi.org/10.1109/ICDIM.2016.7829781

A Machine Learning Approach for Indirect Human
Presence Detection Using IOT Devices

Rui Madeira
Instituto de Telecomunicações

Lisbon, Portugal
Department of Information Science and Technology

ISCTE-IUL
Lisbon, Portugal

Rui_Nuno_Madeira@iscte.pt

Luís Nunes
Instituto de Telecomunicações

Lisbon, Portugal
Department of Information Science and Technology

ISCTE-IUL
Lisbon, Portugal

luis.nunes@iscte.pt

Abstract—This paper describes the construction of a system
that uses information from several home automation devices, to
detect the presence of a person in the space where the devices are
located. The detection however doesn’t rely on the information of
devices that explicitly detect human presence, like motion
detectors or, smart cameras. The information used is the one
available in the Muzzley system, which is a mobile application
that allows the monitoring and control of several types of devices
from a single program. The provided information was
anonymized at the source. The first step was to extract adequate
features for this problem. A labeling step is introduced using a
combination of heuristics to assert the likelihood of anyone being
home at a given time, based on all information available,
including, but not limited to, direct presence detectors. The
solution rests mainly on the use of supervised learning algorithms
to train models that detect the presence without any information
based on direct presence detectors. The model should be able to
detect patterns of usage when the owner is at home rather than
rely only on direct sensors. Results show that detection in this
context is difficult, but we believe these results shed some light on
possible paths to improve the system’s accuracy.

Keywords—ambient intelligence; internet of things; human
presence detection; sensor fusion

I. INTRODUCTION

Human presence detection is an ongoing challenge in
several scenarios and applications, one of them is in ambient
intelligence and home automation. This projects intends to
create a system to be able to infer about presence using
general information and statistics of usage and interaction with
several types of devices.

Ambient intelligence in computing refers to technology
that is non-intrusively integrated in an environment, works
without the need of intensive interaction from a user, and
adapts, in an automated way, to the necessities of each user
and context. The goal of this technology is the creation of
complex systems with simple interfaces that enhance the
quality of our daily lives [1] [2] [3].

Internet of Things (IoT) is the network of physical objects
with electronics, software, sensors and connectivity
capabilities that allow these devices to communicate with each

other and to exchange information. By fusing the information
from each device, and through the interaction of each device
with its environment, we are able to build complex systems
that may enhance our quality of life [4] [5] [6] [7] [8].

Home automation can be seen as an instantiation of the
concept of ambient intelligence in which the environment we
want to “make intelligent” is a residence, and the functions we
want to control and monitor are those that control the devices
that impact the house’s variables, such as temperature, energy
consumption or humidity for example.

Nowadays it is increasingly common to have connected
devices in on our houses. [9] predicts that before 2020 the IoT
will be comprised of more than 50 billion devices. Even today
there are a lot of different devices available in the market for
many different purposes, and the number is growing rapidly.

A problem with these devices is that each manufacturer
company has its way of communicating and programming its
device. Muzzley is one of the current attempts to integrate all
devices by providing a mobile application and a platform that
allows for the interaction with an ever growing number of
different devices, independently of their brand. Among other
features the application gives the user the possibility to create
programmed rules with triggers and consequences. One useful
trigger (or part of many condition triggers) is the proposition
“if someone is at home do … ”.

The information about human presence on a domestic
house is interesting for several reasons:

 Allows the automation of several actions such as
turn on/off devices when someone arrives, turn
off when they leave.

 May aid in some forms of intrusion detection.

 Allows learning the user’s routines in a non-
intrusive way, since it is fundamental to know
when a user is at home or when he is simply
interacting with the devices remotely.

 Can help detect behavior anomalies related to
health conditions.

Specific and reliable detectors are usually expensive for
domestic use. The more affordable devices usually have
limitations, for example a person sitting down on a couch will
not be detected by a regular motion sensor. This project
intends to detect presence by using information of objects not
built specifically for this purpose.

The idea is to process the data generated from interactions
between the user, the devices and the platform in order create
general metrics, not related to each device usage or
characteristic, like for example average number of interactions
per day, or number of interactions in the last half hour. These
will then be used to train machine learning models for
presence detection.

If this proves to be a good method, it will allow to infer
information about presence for users that don’t have presence
sensors. And may increase the overall fidelity of houses
equipped with presence detectors, for instance by discarding
the presence of pets, which can trigger some presence sensors.

II. RELATED WORK

In recent years the increased general availability of
computing technology, is leading to an increase accessibility
of devices related to ambient intelligence and internet of
things to the general audiences [3] [10] [11]. The main devices
that can be found in common technology stores are light bulbs,
capable of network connection and being remotely controlled.
Sensors, like thermostats, carbon dioxide sensors, motion
sensors. Also some houses are now built with home
automation in mind [12].

This led also to an increase in research in the area. The
Dream Green House [13] project, has the goal of creating the
world’s most intelligent house, but also focusing on ecology.
The project consists of a series of subprojects, each one
focusing on one aspect to improve the house, for example, a
module to control energy consumption, another for
temperature control, luminosity control, water consumption
monitor, etc.

In 2013 [14] developed a presence detection system at a
room or zone level for the house. This system infers about
presence by using a large quantity of information gathered
from several sources. The type of data used and its source may
indicate presence explicitly, such is the case for pressure
sensors placed in beds and chairs, or implicitly, in the case for
example of the detection of network traffic coming from a
PlayStation system.

Another example of house that implements these
technologies is the Gator House [15], which has the objective
of creating a smart home that can help and monitor the daily
life activities of the senior population or people with special
needs. One of the most interesting contributions of the project
is the creation of a model architecture for the middleware to
control and coordinate all the systems implemented in the
house. This model is structured in layers, the base layer has to
do with the raw data produced by the devices, and then,
progressively through the layers the system becomes more
complex and abstract in the sense of the created information.

Some devices available in the market, such as the Nest
thermostat, already use information from several sources in
order to infer about human presence. Nest for example uses
temperature, carbon dioxide levels and noise levels for this
effect. As stated before, this project is not about using specific
sensors or information, it is about indirectly doing presence
detection through the interaction messages and their statistics
for generic users with different devices and routines. This is
what makes this a unique project.

III. PROCESSING THE DATA

A. The Muzzley Platform

The system generates data related to the interaction
between the user application and the platform, and then
between the platform and each device manufacturer systems.
In order to be able to cope with the large diversity of devices
and information created by these interactions, the application
has a large and well defined ontology that coordinates the way
each device transmits its information.

The messages from a “raw” data-set gathered from the
platform will be divided in three types:

user_reads: these messages concern direct requests from
the application or the platform to a specific device in order to
obtain the value of one of its properties. These requests might
be triggered by the user, for example opening the application,
or by the rules module if it needs to know a property at a
certain time.

user_writes: these messages are instructions, generated by
the user or a rule, to a device in order to change the value of
one of its properties. They are very similar to the user_reads
messages, however these have some fields more dependent on
the schema of the message. For example, if the message is for
an RGB light bulb to change its color than it will have the
additional r, g and b fields.

device_updates: these messages are quite different from
the other types, they are sent throughout the platform and
inform the concerned entities, a user application for example,
about the value of a device property. Because they inform the
value, these messages have, like the user_writes, more fields
depending on the type of schema.

Regardless of type, a message will have ids and names
related to the device hierarchy that serve as a way to organize
the devices and their components to be able to manage them.
These are: profile id, linking to a brand of light bulbs for
example, and component id, one of the specific light bulbs
sold in a set, and property id, in this case the brightness of a
specific bulb. The message also contains a timestamp field.

B. Plugins developed

The provided anonymized datasets are then processed by
plugins that extend an internal program suited to work with
this data created for this project. These will generate
information for the machine learning algorithms.

devicesPerUser: this plugin iterates through user_reads
and writes datasets and creates information per user about its
devices, such has: number of devices, number of components,
the complete device hierarchy of that user, different schemas

used by these devices. For this it uses the ids present on the
messages

loadEventsToDB: the main idea of this plugin is to insert
into a database all of the events of all types of datasets, so that
it is easy create other information in other plugins by query.
The algorithm also maps the device_updates messages to
anonymous users using information from the devicesPerUser
plugin, since these messages have no information about user.
It registers action times using the message timestamp and the
user time-zone, if available. And marks which update occurred
without a previous user_write message, because this indicates
that either it changed by itself, ex: the value of a thermometer,
or it changed because of a manual interaction. This is done by
comparing update messages to previous write messages within
a time-frame.

presenceFromDevices: this plugin is responsible for
collecting events that can give us information about presence.
This information is a mixture of heuristics, for example
device_updates from light bulbs that were independent, this
probably means that someone is home (notice that the detected
presence can be someone that is not the application owner).
This also collect other sensor information, for example
cameras with motion sensors. The events are divided in two
types: continuous, gathered from devices like alarms whose
state provides a continuous source of presence information,
and non-continuous like motion sensors or light bulb
interactions which have a time window, heuristically defined,
in which the occurrence of the event is relevant.

interactionStatsPerUser: this plugin is responsible for
creating usage statistics for each user with different levels of
granularity, taking into account the type and time of day. The
metrics are created by iterating through the stored messages
and counting events and time passed, then averages are
calculated using this information. Examples of created metrics
are: average number of update messages per hour, average
number of write messages per weekend day, average number
of independent update messages per hour on a weekday.

createMLDatasetGenStats: this plugin generates more
immediate metrics. It will also iterate through the stored
messages and depending on the chosen mode it will either
create an entry per message, or an entry per window of time.
The metrics on this entry are for example: number of write
messages in the past 5 minutes, number of independent
updates in the past half hour. This algorithm also creates
information about presence per entry by querying the
presenceFromDevices collection for events relevant to the
time of the entry.

createCSVsForPresence: this plugin uses the information
generated previously to create csv files that will later be used
with machine learning algorithms. It creates a line of csv per
createMLDatasetGenStats plugin entry, writing in the file the
information generated in this plugin plus other like the ones
present in the interaction stats and devicesPerUser. It can
create datasets with some variations such as: only writing in
the csv lines of users with more than X devices, only using
information presence from continuous sources, among other
options.

IV. CREATING THE MACHINE LEARNING MODELS

The first test was of a small anonymized dataset, gathered
from 3 days of interactions. The generated csv size ranged
from 2MB to 300MB depending on pre-processing options.
This data was from roughly 900 users, but depending on the
mode only that data from some users could be used.

The classifiers were trained in Weka [16] and the results
obtained in this phase showed that the approach is interesting
but more exploration was needed. Tests were made using
regression, treating presence as a continuous values, and
discretizing the presence value gathered in the plugins into
two or more classes. An example result, gathering information
only from continuous sources, with only two classes to
predict, which are presence and unknown, using a j48 decision
tree, the Weka implementation of the C4.5 algorithm [17], and
10-Fold cross validation as evaluation method, we were able
to achieve overall 99% of correctly classified instances. But
for the same case, using non-continuous sources for presence
gathering the results for the presence class were below 50%.
Feature selection algorithms were also used to eliminate most
features, since with the described plugins over 300 features are
generated but only 30 to 60 remained after applying feature
selection filters. This step helped training the classifier faster,
with better precision and to understand what information was
more useful.

After this phase, a larger version of the problem was
tackled and at this point Weka was replaced by Scikit-Learn
[18]

A. Scikit-Learn Experiments

The first part of the experiment (feature and parameter
selection) uses Pandas [19] to read and transform the data to
matrices supported by Scikit-Learn. The presence attribute is
discretized to {0, 1} meaning unknown or presence. Feature
selection is done choosing an algorithm from these:
SelectKBest, with Chi2 [20] as the scorer function,
LinearSVC [21] or a Random Forest [22], the last two cases
are classifying algorithms which in their normal operation will
rank the features in terms of their contribution to
classification, so they can be used in this feature selection
phase.

The next phase is parameter search, the classifier chosen,
in this case a Random Forest [22], is fitted and tested to see
which options for the classifier best suit the problem. This
process also has 3 modes, the first is random parameter search,
the second grid search and in the last both types of searches
are used. Parameters are scored by testing the data with a 3-
fold cross validation, and the best parameters are chosen.
Finally the algorithms will be evaluated with a 5-fold cross
validation for reference. This process is done with a small
subset of the data due efficiency constraints.

The second part of the experiment uses the previous
selected features and parameters to load a bigger part of the
dataset and train and test on this new data. A 10-fold cross
validation is used, generating the classification reports that
will be presented in this paper.

The full dataset used contains 1 month of data, ranging,
roughly, between 1 GB and 15GB, depending on the
preparation in the plugins step. Differences in the pre-
processing will be detailed in the next section.

B. Experiments made

Due to the way the instances are tagged, the experiments
are mainly divided between excluding and not excluding the
presence events in the calculated metrics. In the “excluding”
scenarios events that were used to calculate presence
information are not taken into account in the counts and
averages calculated by the plugins. This is done using an
identifier that uses profile, component and property id. So no
brightness events of a light bulb will enter the statistics if the
brightness information of this bulb was used to gather
presence information for a user in the heuristic labelling step.
But if, for example, the color-RGB property of this bulb
wasn’t used for presence labeling, the events related to this
will enter the statistics. As stated before, the gathered presence
value from the plugins was discretized to 0.0 or 1.0, and will
be referred as unknown and presence from now on. This is a
very strict procedure since it throws away information that,
after pre-processing and merging with other information, can
hardly be used to infer presence directly.

The first experiments yielded very good results, over 0.9
precision and recall was achieved for both classes, excluding
and not excluding labeling information. However, after further
exploration we realized the algorithm was using the metrics to
detect each user almost individually and then classifying
according to if the user has mostly presence tagged instances
or unknown ones. This was possible because users with
devices that contribute with continuous type information had
much more presence tagged instances than the ones which
only had non-continuous type information.

This led to the conclusion that for now the information
gathered from each separated type of event: non continuous
sources, ex: light bulbs, and continuous sources, for example:
alarms shouldn't be all gathered in the same dataset. So the
experiments were repeated with different types of datasets.

Results will now be presented stating the difference
between them, depending on whether events were excluded or
not, and which type of events were used to gather presence
information from. These results are obtained with the process
previously explained in the Scikit-Learn Experiments section
with the difference that the parameter search phase was not
done due to time constraints.

In the first new experiment events were not excluded and
only presence gathered from non-continuous events was used:

TABLE I. CLASSIFICATION REPORT USING NON-CONTINUOUS EVENTS
FOR LABELING NOT EXCLUDING ANY INFORMATION FROM METRICS

classes precision recall f1-score support
unknown 1.0 1.0 1.0 4979672
presence 0.87 0.49 0.62 20330
avg/total 1.0 1.0 1.00 5000002

TABLE II. CONFUSION MATRIX FOR THE SAME SCENARIO OF TABLE I

actual classes
classes predicted

unknown presence

unknown 4978142 1530

presence 10427 9903

As with the initial experiments, we have now removed the
events that were used to collect presence information from the
statistics and repeated the experiment with the previous
dataset:

TABLE III. CLASSIFICATION REPORT USING NON-CONTINUOUS EVENTS
FOR LABELING AND EXCLUDING INFORMATION USED FOR LABELING FROM

METRICS

classes precision recall f1-score support
unknown 1.0 1.0 1.0 4980543
presence 0.54 0.14 0.22 19459
avg/total 0.99 1.0 1.00 5000002

TABLE IV. CONFUSION MATRIX FOR THE SAME SCENARIO OF TABLE III

actual classes
classes predicted

unknown presence

unknown 4978246 2297

presence 16726 2733

Then the same experiment was done but this time a
minimum of devices, schemas and interaction per day was
enforced. And then a maximum limit of these features was
used. So only users who fulfilled these conditions were in the
dataset. This tested if the model would behave better when
there was information from more or less devices available.
The results weren't better, recall dropped to 0.12 and 0.13
respectively. Precision however climbed to 0.60 in the case of
the maximum devices, which suggests the algorithm is more
certain of presence cases with less devices.

In order to use the rest of the presence information,
datasets were created separately for users who had continuous
information:

TABLE V. CLASSIFICATION REPORT USING CONTINUOUS EVENTS FOR
LABELING AND NOT EXCLUDING ANY INFORMATION FROM METRICS

classes precision recall f1-score support
unknown 0.72 0.62 0.67 412795
presence 0.83 0.89 0.86 884421
avg/total 0.80 0.80 0.80 1297216

TABLE VI. CONFUSION MATRIX FOR THE SAME SCENARIO OF TABLE V

actual classes
classes predicted

unknown presence

unknown 257197 155598

presence 100776 783645

These experiments were then reproduced excluding the
events used to gather presence information, but results were
very similar. Finally, we experimented a set with users who
had both types of information and this experiment achieved
good results, similar to the previous presented in table V.

After this, all these variations were tested again but with
the difference that each line of the csv was created per event
instead of using a time window. In the non-continuous dataset
this approach lowered the scores overall but raised recall in
some cases. For the continuous cases this approach also
lowered the obtained scores. Finally, for the dataset of users
who had both types of information, the results remained
practically the same.

The number of users present in each dataset varied greatly,
with the non-continuous having approximately 1200 users
depending on the case, and the continuous 200. The difference
in number of instances of each class was also very big, mostly
just the continuous dataset had more lines of the presence
class.

In order to cope with these differences between number of
instances of each class, new experiments for the most
interesting cases were done adding an additional random
down-sampling phase to the process in order to have balanced
datasets. Scores improved significantly. Results for the
window-based, non-continuous information and excluding
events follow:

TABLE VII. CLASSIFICATION REPORT FOR WINDOW BASED, USING NON-
CONTINUOUS EVENTS FOR LABELING, EXCLUDING INFORMATION USED FOR

LABELING FROM METRICS, AND WITH RANDOM DOWN-SAMPLING

classes precision recall f1-score support
unknown 0.74 0.81 0.78 19459
presence 0.79 0.72 0.76 19459
avg/total 0.77 0.77 0.77 38918

TABLE VIII. CONFUSION MATRIX FOR THE SAME SCENARIO OF TABLE VII

actual classes
classes predicted

unknown Presence

unknown 15762 3697

presence 5411 14048

The event based approach was also better with down
sampling, but in this case recall for the presence class was
around 0.5:

TABLE IX. CLASSIFICATION REPORT FOR EVENT BASED, USING NON-
CONTINUOUS EVENTS FOR LABELING, EXCLUDING INFORMATION USED FOR

LABELING FROM METRICS, AND WITH RANDOM DOWN SAMPLING

classes precision recall f1-score support
unknown 0.65 0.93 0.77 168323
presence 0.88 0.50 0.64 168323
avg/total 0.77 0.72 0.72 336646

TABLE X. CONFUSION MATRIX FOR THE SAME SCENARIO OF TABLE IX

actual classes
classes predicted

unknown presence

unknown 157047 11276

presence 83495 84828

Finally, these classifiers trained using down sampling were
tested with the full data for each case, without cross-
validation, in order to see the full capabilities of this
technique. In the window based sets recall values obtained
were close to their counterpart experiments without down
sampling training, but in precision for the presence class
dropped to 0.08. Because of the nature of the problem, the low
precision scores might be unknown class instances that
actually correspond to presence cases but we simply don't
have information to tag them as such. These experiments may
suggest that different classes or ways to rate the classification
could be explored.

Despite these differences in the datasets and the results
obtained, the many experiments gave us an insight to the
problem. As expected the algorithm as a hard time identifying
possible presence for the non-continuous case. Even using
information from events that were used to determine the user’s
presence and build the training-set’s labels, is not a guarantee
of a high accuracy, which means it probably makes sense to
continue counting these in the metrics instead of handicapping
so heavily the training data just to assure the model
generalizes the rule.

Work so far has focused mainly on pre-processing and
exploration of standard approaches to the problem with these
experiments. We also intended to assess the impact of using
all or parts of the information. Future work will aim at
creating more sophisticated features and other ways to
improve the prediction. The presented results were obtained
not using parameter search for the classifiers, because of time
constraints, so that extra step can also help. Also, the creation
of a specific hand-labeled data set (provided by volunteers)
could greatly improve the confidence in the results.

V. CONCLUSIONS

This paper presented a system for human presence
detection in a generic ambient intelligence context. The
system can be further improved but still it performs well in its
current state and shows a promising capability for detection
using unspecific data from several IOT devices. In order to
create the system an extensive pre-processing phase was
applied to anonymized data gathered from a real application
(the Muzzley platform), generating metrics for each new
example. Datasets were labeled with presence information
inferred by heuristic methods. The main challenges of the
project were the pre-processing needed, the diversity of
devices that interact with the platform, the creation of
adequate features and not having explicit presence
information. Although many results obtained have a low
precision and recall for the presence class, the approach
described provides insights to build upon. Presence detection,
and, possibly in the future, activity detection, or household

number determination, are very important challenges to
ambient intelligence and hopefully this project will help shed a
little light on the current possibilities with these devices and
technologies.

ACKNOWLEDGMENTS

We thank everyone at Muzzley for the access to the data and
their continuous help in interpreting the properties and
metrics.

REFERENCES
[1] C. Zelkha, Eli; Epstein, Brian; Birrell, Simon; Dodsworth, “From

devices to ‘ambient intelligence,” Digit. Living Room Conf., 1998.

[2] D. J. Cook, J. C. Augusto, and V. R. Jakkula, “Ambient intelligence:
technologies, applications, and opportunities,” Pervasive Mob. Comput.,
vol. 5, no. 4, 2009, pp. 277–298.

[3] E. H. L. Aarts and J. L. Encarnacão, “True Visions: The Emergence of
Ambient Intelligence,” Springer, 2006.

[4] F. Mattern and C. Floerkemeier, “From the internet of computers to the
internet of things,” Lect. Notes Comput. Sci. (including Subser. Lect.
Notes Artif. Intell. Lect. Notes Bioinformatics), vol. 6462 LNCS, 2010,
pp. 242–259.

[5] Lopez Research, “An introduction to the internet of things (iot),” Lopez
Res. Llc, vol. Part 1 , pp. 1–6, November 2013.

[6] N. Gershenfeld, R. Krikorian, and D. Cohen, “The internet of things,”
vol. 291, 2004, no. 4.

[7] G. Santucci, “The internet of things: between the revolution of the
internet and the Metamorphosis of objects,” Forum Am. Bar Assoc.,
2010, pp. 1–23.

[8] C. Reports, “Reaping the benefits of the internet of things,” no. May
2014.

[9] D. Evans, “The internet of things - how the next evolution of the internet
is changing everything,” CISCO white Pap., pp. 1–11, April 2011.

[10] J. C. Augusto and D. Shapiro, “Advances in ambient intelligence:
volume 164 frontiers in artificial intelligence and applications,” IOS
Press Amsterdam, The Netherlands, 2007.

[11] D. J. Cook and S. K. Das, “How smart are our environments? An
updated look at the state of the art,” Pervasive Mob. Comput., vol. 3, no.
2, 2007, pp. 53–73.

[12] G. J. H. Patrício, “Redes sem fios de microcontroladores com acesso
remoto aplicado à Domótica,” Cad. Saude Publica, 2009.

[13] R. Collingridge, “Dream green house,” 2009. [Online]. Available:
http://dreamgreenhouse.com/index.php. [Accessed: 28-Dec-2015].

[14] R. Collingridge, “Dream green house: occupancy & presence,” 2013.
[Online]. Available:
http://www.dreamgreenhouse.com/projects/2013/presence/index.php.
[Accessed: 28-Dec-2015].

[15] S. Helal, W. Mann, H. El-Zabadani, J. King, Y. Kaddoura, and E.
Jansen, “The gator tech smart house: a programmable pervasive space,”
Computer (Long. Beach. Calif), vol. 38, no. 3, 2005, pp. 50–60.

[16] M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann, and I. H.
Witten, “The Weka data mining software,” SIGKDD Explor. Newsl.,
vol. 11, no. 1, 2009, p. 10.

[17] J. R. Quinlan, “C4.5: programs for machine learning,” San Francisco,
CA, USA: Morgan Kaufmann Publishers Inc., 1993.

[18] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O.
Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J.
Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and É.
Duchesnay, “Scikit-learn: machine learning in Python,” Mach. Learn.
vol. 12, 2012, pp. 2825–2830.

[19] W. McKinney, “Data structures for statistical computing in Python,”
Proc. 9th Python Sci. Conf., vol. 1697900, no. Scipy, 2010, pp. 51–56.

[20] R. L. Plackett, “and the Chi-squared Test,” vol. 51, 1983, pp. 59–72.

[21] B. E. Boser, I. M. Guyon, and V. N. Vapnik, “A training algorithm for
optimal margin classifiers,” in Proceedings of the Fifth Annual
Workshop on Computational Learning Theory, 1992, pp. 144–152.

[22] Tin Kam Ho, “Random decision forests,” Proc. 3rd Int. Conf. Doc. Anal.
Recognit., vol. 1, 1995, pp. 278–282.

