Skip navigation
User training | Reference and search service

Library catalog

Content aggregators
Please use this identifier to cite or link to this item:

Title: Improving the drug discovery process by using multiple classifier systems
Authors: Ruano-Ordás, D.
Yevseyeva, I.
Basto-Fernandes, V.
Méndez, J. R.
Emmerichd, M. T. M.
Keywords: Drug discovery
Machine learning algorithms
Feature clustering
Multiple classifier systems
Issue Date: 2019
Publisher: Pergamon/Elsevier
Abstract: Machine learning methods have become an indispensable tool for utilizing large knowledge and data repositories in science and technology. In the context of the pharmaceutical domain, the amount of acquired knowledge about the design and synthesis of pharmaceutical agents and bioactive molecules (drugs) is enormous. The primary challenge for automatically discovering new drugs from molecular screening information is related to the high dimensionality of datasets, where a wide range of features is included for each candidate drug. Thus, the implementation of improved techniques to ensure an adequate manipulation and interpretation of data becomes mandatory. To mitigate this problem, our tool (called D2-MCS) can split homogeneously the dataset into several groups (the subset of features) and subsequently, determine the most suitable classifier for each group. Finally, the tool allows determining the biological activity of each molecule by a voting scheme. The application of the D2-MCS tool was tested on a standardized, high quality dataset gathered from ChEMBL and have shown outperformance of our tool when compare to well-known single classification models.
Peer reviewed: yes
DOI: 10.1016/j.eswa.2018.12.032
ISSN: 0957-4174
Accession number: WOS:000457664700021
Appears in Collections:ISTAR-RI - Artigos em revistas científicas internacionais com arbitragem científica

Files in This Item:
File Description SizeFormat 
Manuscript_REV2.pdfPós-print1.98 MBAdobe PDFView/Open

FacebookTwitterDeliciousLinkedInDiggGoogle BookmarksMySpace
Formato BibTex MendeleyEndnote Currículo DeGóis 

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.