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Abstract 

Machine learning methods have become an indispensable tool for utilizing large knowledge and 

data repositories in science and technology. In the context of the pharmaceutical domain, the 

amount of acquired knowledge about the design and synthesis of pharmaceutical agents and 

bioactive molecules (drugs) is enormous. The primary challenge for automatically discovering 

new drugs from molecular screening information is related to the high dimensionality of 

datasets, where a wide range of features is included for each candidate drug. Thus, the 

implementation of improved techniques to ensure an adequate manipulation and interpretation 

of data becomes mandatory. To mitigate this problem, our tool (called D2-MCS) can split 

homogeneously the dataset into several groups (the subset of features) and subsequently, 

determine the most suitable classifier for each group. Finally, the tool allows determining the 

biological activity of each molecule by a voting scheme. The application of the D2-MCS tool was 

tested on a standardized, high quality dataset gathered from ChEMBL1 and have shown 

outperformance of our tool when compare to well-known single classification models. 

 

Keywords 

Drug discovery; machine learning algorithms; feature clustering; multiple classifier systems 

                                                
1 ChEMBL available at: https://www.ebi.ac.uk/chembl/ 
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1. Introduction and motivation 

Technological advances achieved during recent decades have allowed important findings to be 

obtained in several highly relevant disciplines such as (i) computer science (Internet (Cohen-

Almagor, 2013) and mobile communications (Charlesworth, 2009)), (ii) biology (DNA 

sequencing (França, Carrilho, & Kist, 2002)), and (iii) biomedicine (such as Face2Gene (Radke, 

2017)). More specifically, the high performance achieved by the latest communication and 

computer systems have turned computer science into one of the most important areas of 

knowledge due to its wide application in various areas, and in multidisciplinary projects in 

particular. A clear example of its relevance is reflected in the emergence and development of 

several interdisciplinary research areas such as bioinformatics (development of new methods 

and software tools in order to facilitate the interpretation of biological data) or cheminformatics 

(use of computer and informational techniques to improve the decision making in the area of 

drug lead identification and optimization).  

In fact, the high computational capabilities of computer systems together with the reduced price 

of storage systems allow achieving advances on processing large amounts of information. In 

detail, they allow (i) efficiently manipulating huge amounts of information, (ii) applying unused 

techniques (due to their high computational requirements) and (iii) implementing new 

exploratory techniques for dealing with large amounts of information (Cao et al., 2018; H. Chen, 

Engkvist, Wang, Olivecrona, & Blaschke, 2018). Healthcare is one of the most favoured 

investment and research sectors due to the immense amount of information collected over time 

(such as diseases, vaccines, drugs or chemical substructures) and its impact on the wellbeing 

of our society as a whole. The distinct characteristics and structures of information related to the 

drugs discovery domain (that are completely different from those used in other healthcare areas 

such as vaccines) together with the immense (and diverse) domain knowledge seriously 

hamper a straightforward manipulation of the information. This issue forced healthcare 

companies to intensify efforts and resources in the continuous development and improvement of 

specific database techniques.  

On average, pharmaceutical companies invest approximately 18% (Morgan, Grootendorst, 

Lexchin, Cunningham, & Greyson, 2011) of their budget into research and development tasks, 

in order to reduce the time and resources needed to develop new drugs or improve existing 

ones. In fact, during the period 2015-2017, an average of 38.5 drugs were approved annually, 

which represents an increase of 47% when compared to the 2008-2013 period (Woodcock, 

2017, 2018). Additionally, the market expansion in pharmerging countries and demographic 

trends in developed countries (with an ageing population) have positioned the pharmaceutical 

sector at the top of the most profitable industries worldwide. Recent studies (Aitken, 2016; 

Civaner, 2012) have predicted that the pharmaceutical market will reach nearly USD 1,485 

billion by 2021, representing an increase in profits of between 14-17% when compared to 

revenues achieved during the period 2013-2017.  
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Nevertheless, the complexity and elevated cost of the stages involving the development of the 

drug and approval process hampers the fast creation of new drugs (Adams & Brantner, 2006). 

One of the biggest challenges takes place during the first stage (preclinical research), where 

thousands of compounds are analyzed and combined in order to obtain new potential 

candidates for development as a medical treatment. Screening methods allow detecting the 

most promising molecules and reduce efforts wasted for testing futile compounds. As described 

in (DiMasi, Hansen, & Grabowski, 2003; Hefti, 2008) only 0.1% of the tested compounds 

achieved promising results according to properties required for a potential candidate to become 

a drug (i.e., bioactivity, toxicity levels or chemical interactions) and are suitable for further study. 

Consequently, the knowledge acquired by pharmaceutical laboratories from preclinical research 

work is highly unbalanced (low number of promising compounds and high number of useless 

compounds). The particular characteristics of this kind of information (high number of available 

chemical substructures, their distinct formatting representations and low rate of valid 

compounds) require the use of customized high-dimensional techniques in order to enhance 

data interpretation. To alleviate this problem, several researchers (Bajorath, 2002; Lipinski, 

Lombardo, Dominy, & Feeney, 2001) developed various techniques specially adapted to deal 

with the specifications of the drugs discovery stages. The other line of research is focused on 

the development of efficient approaches for selection of most promissing subsets of potential 

candidates to become a drug based on predicted bioactivity of molecules and their diversity 

(Yevseyeva et al., 2019). However, after a deep analysis of the state-of-the-art of 

pharmaceutical domain, we found a lack of high-performance decision-making and prediction 

techniques suitable for tackling the early pre-clinical stages of the drugs discovery process. 

The usage of simple Machine Learning (ML) classifiers for screening molecules (represented by 

the information about their chemical substructures) has been applied with quite good results 

during the last years. However, we believe that the usage of high-dimensional datasets that 

often include dependent features has had a significant impact on the performance of classifiers. 

In fact, the “curse of dimensionality” (Domingos, 2012; Wilcox, 1961; Zhai, Ong, & Tsang, 2014; 

Zhang, Golbraikh, Oloff, Kohn, & Tropsha, 2006) issue emerged as the complexity of finding 

linear (and even non-linear) transformations of input variables to assess the target class. 

Moreover, some classifiers (such as Naïve Bayes) require the independence of input variables. 

The usage of feature selection schemes could be an adequate form to address this issue. 

However, the elimination of features could lead to a loss of information. Keeping this in mind, we 

believe that a Multiple Classifier System (MCS) combining the outputs of several ML classifiers 

created by using different subsets of features included in the original dataset could improve the 

screening performance achieved by single classifiers. In this work, we introduce a proposal to 

create disjoint feature subsets from the original data source (feature-clusters) and maximize the 

independence of the attributes belonging to each concrete cluster. Hence, classifiers using the 

MCS would achieve interesting conditions to perform better: (i) lower dimensionality and (ii) 

independence of input attributes. 

Using MCS (Chow, 1965; Woźniak, Graña, & Corchado, 2014) provides adittional advantages. 

Concretely, they achieve better performance with independence of the amount of available data. 

Moreover, a combination of classifiers (ensemble of classifiers) trend to outperform the usage of 

individual classifiers, which entails a better probability of finding an optimal model. Finally, they 
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allow exploiting parallel computing and computer clustering technologies for faster operation 

while taking advantage of the capabilities/properties provided by each individual classifiers. 

Despite these interesting features of MCSs, to the best of our knowledge, they have not been 

applied to automatically select promising chemical substances and improve the drugs discovery 

process. Keeping this idea in mind and guided by the importance of the preclinical research 

stage and the lack of techniques to address this problem, we decided to design and develop 

D2-MCS (Ruano-Ordás, 2018), a novel multiple-classifier system able to automatically 

determine the biological activity of a specific chemical compound based on its composition (i.e. 

chemical substructures and physicochemical descriptors). The scientific challenges for the 

creation of D2-MCS were (i) the choice of an effective but simple method to evaluate the 

independence of features, (ii) the identification of the number of feature clusters, (iii) training and 

tuning of classifiers and (iv) the combination of the outputs of classifiers included in the MCS.  

While this section has presented the motivations of our work, the rest of the paper is structured 

as follows: Section 2 outlines the most-common ML techniques used for in-silico screening. 

Section 3 introduces the architectural design of our current biological activity detector software; 

Section 4 shows the experimental protocol carried out to demonstrate the suitability of our tool. 

Finally, Section 5 summarizes the main conclusions extracted from this work and outlines future 

research lines. 

2. In-silico screening background 

Pre-clinical studies are the first stage of the complex drugs discovery process. The goal of these 

studies is to identify drug candidates that would be tested in humans (clinical trials) and may 

become approved drugs. Preclinical studies include a great amount of work and comprise all 

activities, from the identification of candidate molecules, to the realization of tests of the drug in 

living cells and animals. Since conventional methods of identifying candidate molecules 

(screening) are expensive regarding time and cost, it is of key importance to develop high-

performance in-silico (computer-based) screening methods.  The recent availability of ‘big data’ 

in cheminformatics makes data-science methods for finding structure-activity relationships 

(SARs) a highly auspicious direction for in-silico screening of molecular compounds.  

In-silico screening (sometimes called virtual screening) has been addressed before with quite 

good results (Burbidge, Trotter, Buxton, & Holden, 2001; Lavecchia, 2015; Lee, Lee, & Kim, 

2017). In (Lavecchia, 2015) a great review of the usage of different ML approaches for ligand-

based and structure-based in-silico screening is introduced. Additionally, these works show the 

usage of some ML techniques including Support Vector Machines (used in (Burbidge et al., 

2001)), decision trees (DT), ensemble methods (such as Adaboost or Random Forests used in 

(Lee et al., 2017)), Naïve Bayesian based approaches, K-Nearest Neighbor Methods (kNN) and 

Artificial Neural Networks (ANN, studied in (Burbidge et al., 2001)).  

In spite of the great amount of research done in the area of in-silico screening, the opportunity 

for further development still exists. The performance of classifiers is widely hindered by the 

unbalanced nature of datasets (which contain only a small amount of active substances), the 
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dimensionality of datasets (more than two thousands of features) and the hidden dependences 

between the features of the datasets. Moreover, the excellent performance achieved by 

ensemble methods (especially Random Forests) suggests that using a combination of 

classifiers has a high potential to improve the achieved results. 

Inspired by the above ideas, we designed D2-MCS, a novel screening method able to 

outperform simple classifiers used in previous works (Burbidge et al., 2001; Lavecchia, 2015; 

Lee et al., 2017). Next section contains a detailed description of our proposal from the 

perspectives of software design and method operation.  

3. D2-MCS: a novel integrative in-silico model. 

In short, the D2-MCS model aims to automatically predict the biological activity of a specific 

chemical compound through a deep analysis of its chemical substructures. D2-MCS was 

entirely developed using R programming language since it has become the favorite language for 

data analysts and scientists all over the world (Gentleman, 1996; Voskoglou, 2017), and was 

mainly motivated by its: (i) ability to handle complex and large datasets, (ii) capability to easily 

program and execute complex simulations, and (iii) compatibility with high-performance 

computer clusters. Additionally, the experimental benchmarking executed in (Fernández-

Delgado, Cernadas, Barro, & Amorim, 2014; Statnikov, Wang, & Aliferis, 2008; Tan & Gilbert, 

2003) prove the high performance achieved by the classification models provided by the R 

platform.  

Figure 1 shows an illustration of D2-MCS operation, which is divided into three different stages: 

(i) feature clustering, (ii) model training and hyper-parameter optimization, and (iii) classification 

results. 
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Figure 1: D2-MCS operation 

3.1. Stage 1: Feature clustering 

As can be depicted in Figure 1, the first stage incorporates several feature-clustering functions 

f(x) able to adequately split the dataset attributes (features) into k groups. Motivated by the wide 

variety of ways of representing and (or) encoding information, the use of customized data-

oriented clustering methods is required. To this end, D2-MCS incorporates an interface able to 

automatically load user-defined feature clustering techniques that can be easily developed using 

a simple inheritance scheme. By default, D2-MCS provides two simple feature-clustering 

techniques: (i) BinaryFisherClustering able to deal just with binary features and (ii) 

MultiTypeFisherClustering capable of managing any type of feature (such as qualitative, 

discrete and continuous values). To accomplish this task both methods compute the 

significance value of each binary feature (fb) by using Equation 1. 

( ), ( ) 1 . ( . ( , ))b b bf binary features s f p value fisher test f class  = −   (1) 

where binary(features) stands for the features having binary values and 

. ( . ( , ))bp value fisher test f class  computes the significance value of each feature depending on 

the class through the execution of fisher exact test (Pett, 2015). Since the null hypothesis for 

fisher.test is the independence of two variables, the 1 .p value−  could be used as a method to 

assess the dependence between the fb and the target attribute (class). Then, the ungrouped 

features are homogeneously placed in clusters according to the cluster global significance value 

(designated as  ). Equation 2 illustrates how   is calculated for each cluster. 



9 

 

 

 1 2, ,..., , ( )
b

n c b

f C

C C C C s f


   =    (2) 

As can be observed from Equation 2, the global significance of a group ( )cC   is computed by 

adding the partial significance of each feature (
bf ) comprising the group C. The main goal of 

the feature clustering stage is to compute a set of clusters  1 2, ,..., nG C C C= ensuring all 

clusters (Ci) present a similar global significance (minimize the dispersion of the global 

significance). The dispersion of the global significance (
G ) can be assessed by using Equation 

3 

 1 2, , ,...,G C C nmax( ) min( ) G C C C =  −  =   (3) 

where 
Cmax( ) and 

Cmin( )  represent the highest and lowest global significance values 

computed from clusters included in G, respectively.  

To avoid the exploration of all possible distributions of binary features intro clusters, we used a 

simplified approximation. Hence, the clustering of binary features into a certain number of 

clusters ( nc ), require the computation of an ordered feature list using significance function 

( ( )bs f ) as sort criterion. Then, the thi element of a list ( )[0 ]( 1i ,...,#binar featuresy − ) will be 

placed in the thn cluster ( [0,..., 1]n nc − ) using Equation 4. 

( )( )( )%2 1n= i%nc - i nc nc −   (4) 

where ( )feat#binar uresy  stands for the number of binary features, ÷ stands for the integer 

division and % stands for the remainder of an integer division. 

Finally, the enhanced feature-managing capabilities of the MultiTypeFisherClustering method 

allows the creation of an additional cluster composed of all the existing non-binary features. 

Otherwise, the inability of handling these type of features forces BinaryFisherClustering to 

ignore them and therefore avoid their usage throughout the following stages. 

3.2. Stage 2: Train and Tune models 

Once the features are successfully grouped into clusters, stage 2 (which involves the training 

and tuning of models) is automatically executed to determine the best models (and parameters) 

for each cluster. As can be seen from Figure 1, stage 2 is responsible for building a set of 

classification models (grouped into 12 different families) over each previously performed feature 

cluster by using an objective function (called δ) to guide the model parameter-optimization 

process. This function was created to simplify building of the models according to the 

classification purpose (such as for minimizing false negative (FN) or false positive (FP) errors). 

D2-MCS provides possibility of selection one or several objective functions related to different 

performance metrics well-known in the Machine Learning environment (Coffin & Saltzman, 

2000; García, Fernández, Luengo, & Herrera, 2010). Below, Table 1 shows a brief description 

of the available objective functions together with their associated performance measures. 
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Table 1. Summary of the objective functions provided by D2-MCS tool. 

Function 
name 

Measure technique Description 

ROC 

Receiver Operating Characteristics 

(Bewick, Cheek, & Ball, 2004; 

Davis & Goadrich, 2006; Hajian-

Tilaki, 2013) 

Used to depict the trade-off between the sensitivity 

and (1-specificity) across a series of cut-off points 

when the diagnostic test is continuous or on an 

ordinal scale. 

Sensitivity 

Sensitivity (Christopher Frey & 

Patil, 2002; Lalkhen & McCluskey, 

2008) 

Refers to the ability to correctly identify positive 

values (e.g. detect patients with a disease). 

Specificity 
Specificity (Lalkhen & McCluskey, 

2008) 

Computes the ability of the test to correctly identify 

negative values (e.g. identify patients without a 

disease).  

Kappa 
Cohen’s Kappa Coefficient (Cohen, 

1968; Thompson & Walter, 1988) 

Measures inter-rate agreement for qualitative 

items. It is a more robust measure than a simple 

percentage agreement calculation, as it takes into 

account the possibility of the agreement occurring 

by chance. 

Accuracy Accuracy (Makridakis, 1993) 

Assess the proportion of true results (both true 

positives and true negatives) among the total 

number of cases examined. 

MCC 

Matthew Correlation Coefficient 

(Boughorbel, Jarray, & El-Anbari, 

2017) 

The MCC is, in essence, a correlation coefficient 

between the observed and predicted binary 

classifications. Returns a value between −1 and 

+1. A coefficient of +1 represents a perfect 

prediction, 0 no better than random prediction and 

−1 indicates total disagreement between 

prediction and observation. 

PPV 
Positive Predictive Values (Bewick 

et al., 2004; Hajian-Tilaki, 2013) 

Used to indicate how often a positive test truly 

represents a true positive. 

NPV 
Negative Predictive Value (Bewick 

et al., 2004; Hajian-Tilaki, 2013) 

Describes the percentage of negative tests being 

truly negative. 

However, the lack of a standardized way of representing the information together with a large 

number of available performance metrics, require the usage of specific data-oriented 

methodologies. To mitigate this problem, D2-MCS is equipped with the capability to 

automatically load new user-defined objective functions in order to build customized data-

adapted classification models. 
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After an objective function is selected, stage two automatically executes the classifiers-creation 

process. To this end, we have user the caret package included in R programing language 

(Kuhn, 2008). This package internally includes the implementation of different methods of 

hyper-parameter tuning during the training process. To ensure the convergence of each ML 

model, the tuning configuration (grid or random search) was selected according to the caret 

package recommendations. Additionally, during this stage, classifiers are build using a k-fold 

stratified cross-validation scheme (with k = 10) (Efron & Gong, 1983; Kohavi, 1995) over each 

previously achieved cluster (C1,C2,...,Cn). D2-MCS provides top 33 most suitable classification 

models (extracted from caret package) to handle high-dimensional datasets (Fernández-

Delgado et al., 2014; Statnikov et al., 2008; Tan & Gilbert, 2003). Table 2 shows a brief 

description of each classification model together with its corresponding R package and model 

family. 
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Table 2. Overview of the classification models available in D2-MCS tool. 

Model Family  Classifier name [R package] R package 

Random Forest 
Random Forest for High-Dimensional 
Data 
Conditional Inference Random Forest 

ranger (Wright & Ziegler, 2017) 
party (Hothorn, Hornik, Strobl, & Zeileis, 
2018) 

Clustering 
Methods 

K-Nearest Neighbors 
Latent Dirichlet Allocation 

caret (Kuhn, 2008) 
topicmodels (Grün & Hornik, 2011) 

Linear Models 

Regularized Generalized Linear 
Models  
Bayesian Generalized Linear Model 
Penalized Multinomial Regression 

glmnet (Friedman, Hastie, & Tibshirani, 
2010) 
arm (Gelman & Hill, 2006) 
nnet (Venables & Ripley, 2002) 

Support Vector 
Machines 

SVM with Radial Basis Function Kernel 
SVM with Linear Kernel 
SVM with Class Weights 
SVM with Polynomial Kernel 

kernlab  
(Karatzoglou, Smola, Hornik, & Zeileis, 
2004) 

Boosting and 
Bagging 

Adaboost 
Boosted Classification Trees 
Bagged AdaBoost 
Bagged CART 
Gradient Boosting Machines 
Extreme Gradient Boosting 
Gradient Boosting Linear Models 

fastAdaboost (Chatterjee, 2016) 
ada (Culp, Johnson, & Michailidis, 2006) 
adabag (Alfaro, Gámez, & García, 2013) 
caret (Kuhn, 2008) 
gbm (Ridgeway, 2004) 
xgboost (T. Chen & Guestrin, 2016) 
mboost (Hothorn et al., 2017) 

Tree Models 
J48 Trees 
CART - R1PARTSE 
CART - RPART2 

RWeka (Hornik et al., 2018) 
rpart (Therneau, Atkinson, & Ripley, 2018) 
rpart (Therneau et al., 2018) 

High 
Dimensional 

Models 

H. Dim. Discriminant Analysis 
H. Dim. Regularized Discriminant 
Analysis 
Regularized Discriminant Analysis 

HDclassif (Berge, Bouveyron, & Girard, 
2018) 
sparsediscrim (Ramey, 2017) 
klaR (Friedman, 1989) 

Neural Networks 
Neural Networks 
Neural Networks with Feature 
Extraction 

nnet (Venables & Ripley, 2002) 

Probabilistic 
Models  

klaR Naive Bayes 
Naive Bayes 

klaR (Friedman, 1989) 
naivebayes (Majka, 2018) 

Distance 
Discrimination 

Sparse Distance Weighted 
Discrimination 
Linear Distance Weighted 
Discrimination 

sdwd (Wang & Zou, 2018b) 
kerndwd (Wang & Zou, 2018a) 

Rule-Based 
Models 

Random Forest Rule-Based Model 
Rule-Based Classifier 
Conditional Inference Random Forest 

randomForest (Breiman, 2001) 
RWeka (Hornik et al., 2018) 
RWeka (Hornik et al., 2018) 
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Once the models are fitted with the best-guess hyper-parameters, stage 2 automatically selects 

the classification model achieving best performance value (according to the objective function). 

Optionally, to have an overall perspective about the global behavior of all available classifiers, 

the performance achieved by each model can be plotted graphically. 

3.3. Stage 3: Classification 

Finally, in stage three previously selected classifiers (best of each cluster) are used to perform 

the classification task. To this end, the individual results of each classification model are 

combined in a unique result by applying a specific voting system. Our tool applies the majority 

voting system due to its adequate balance between performance, resource consumption, and 

computational speed (Dietterich, 2000; Ruta & Gabrys, 2005; van Erp, Vuurpijl, & Schomaker, 

2002). In order to increase the flexibility of the application, the voting system is implemented as 

a callback function. This scheme allows users to easily test and execute their customized voting 

strategies. 

4. Model evaluation 

In order to assess the effectiveness of the proposed model for determining the biological activity 

of the molecules, we designed and executed a set of experiments involving a set comprising 

3925 chemical compounds represented by 2132 descriptors. In order to reduce the elevated 

cost related to the drugs discovery process, it is important to minimize the number of tests of 

invalid compounds (biologically inactive compounds). With the aim of minimizing this problem 

(reducing the number of FN errors), we performed the experimental protocol using MCC and 

PPV as objective functions. Finally, we implemented a benchmarking comparison of D2-MCS 

against the model achieving best performance values among those included in Table 2. Our 

experimental setup together with the selected dataset is introduced in Section 4.1, while Section 

4.2 presents and discusses the achieved results. 

4.1. Experimental setup 

To perform a straightforward and reproducible protocol, we used a standardized, high-quality 

dataset gathered from ChEMBL2 version 22 based on UniProt accession P34972 (Gaulton et 

al., 2012). Regarding to activity data potential, duplicates were ignored, no activity or data 

validity comments were allowed, only data from binding assays and with a pCheMBL value were 

kept. This led to a dataset composed of 3925 chemical compounds (instances) represented 

using 2132 features. The first 2048 features epitomize different chemical structures fingerprints 

(represented using FCFP_6 notation (O’Boyle & Sayle, 2016; Rogers & Hahn, 2010)), while the 

remaining 84 are associated with several physicochemical descriptors (such as Fractional Polar 

Surface Area (Ertl, Rohde, & Selzer, 2000; Shrake & Rupley, 1973), Rotatable Bonds (Veber et 

al., 2002) or Molecular Weight (Tresadern et al., 2017)). Additionally, the set was transformed 

                                                
2 ChEMBL available at: https://www.ebi.ac.uk/chembl/ 
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into a binary classification set where the activity cut-off was defined at a pChEMBL value > 7 

(Lenselink et al., 2016) to ensure highly active compounds. Finally, each compound was written 

into a tab-delimited text file. The final set contained 1977 active compounds and 1948 inactive 

compounds. Table 3 shows the codification of each feature grouped by type. 

Table 3. Feature characteristics and distribution. 

Feature type Feature values Nº of features 

Chemical substructure fingerprints binary 2048 

Physicochemical descriptors 
discrete values 50 

continuous values 34 

Total:  2132 

As can be seen from Table 3, each chemical substructure fingerprint is codified using binary 

notation to indicate its presence (1) or absence (0) for each specific chemical compound. 

Moreover, the physicochemical descriptors are represented with discrete or continuous values 

according to the descriptor type and metric representation.  

To perform the experimental setup the dataset was randomly divided into four equally 

distributed splits. Each split comprises 25% of the whole dataset with the same amount of 

Active and Inactive compounds. Moreover, to avoid model overfitting and therefore ensure 

realistic classification results, each split is assigned to a specific stage of the D2-MCS process. 

Table 4 shows a brief description concerning the main characteristics of each split (such as 

number of compounds or class ratio) together with the relationship among each stage.  

Table 4. Dataset division and distribution 

Dataset part Percentage 
Number of Compounds 

(Actives / Inactives) 

Used as Input 

Stage 1 Stage 2 Stage 3 

Split 1 25% 981 (480 / 501) ✓   ̶ ̶ 

Split 2 25% 981 (488 / 493) ✓ ✓ ̶ 

Split 3 25% 981 (505 / 476) ̶ ✓ ̶ 

Split 4 25% 982 (504 / 478) ̶ ̶ ✓ 

As can be seen from Table 4, the union of the first two splits are used to accomplish stage one 

(perform the clustering of features). During this stage, the specific-data-oriented 

MultiTypeFisherClustering is applied as feature clustering method due to its ability to handle 

features having different codifications (binary, continuous and discrete). Then, second and third 

splits are utilized as input for both, performing the model-building and hyper-parameter-
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optimization processes (stage two). The partial overlapping of data used for the first two stages 

has been designed to reduce potential coupling troubles while maximizing information available 

to execute both stages. Finally, the last split is used as a test set to evaluate the performance of 

our proposal (and is not used for any other purpose to ensure the significance of the results).  

For comparison purposes, our proposal has been benchmarked against the utilization of simple 

and ensemble classifiers. The same dataset organization has been used for this purpose. 

However, in this case, splits 1, 2 and 3 has been applied for training and optimizing purposes 

while split 4 is utilized for model evaluation purposes. 

From a general perspective and given the similarity of the drugs discovery domain with a binary 

classification problem (i.e., determining the absence/presence of biological activity), there is a 

wide range of statistical methods available to assess the performance of the classification 

models (Kosinski, 2013). However, as mentioned in (Baldi, Brunak, Chauvin, Andersen, & 

Nielsen, 2000), the particular characteristics of this domain requires the usage of adequate 

problem-oriented statistical methods, in order to ensure a successful and realistic assessment 

of the achieved results. Following medicinal chemistry experts and authors suggestions 

(Boughorbel et al., 2017; Powers, 2011), we considered that the most adequate measures to 

evaluate the final performance of the previously constructed models are PPV and MCC, due to 

their usage as objective functions during the second stage.  

4.2. Results and discussion 

To validate and test the performance of our D2-MCS tool correctly, we consider two different 

scenarios: (i) MCC scenario, where MCC coefficient is used as an objective-function for building 

the classification model and, (ii) PPV scenario, where PPV measure is considered for the 

optimization of classifiers. Additionally, in order to demonstrate the suitability of D2-MCS, we 

also execute a performance benchmarking comparison of our proposal and the simple ML 

algorithm achieving best performance. 

As previously stated, the first stage of the D2-MCS operation uses MultiTypeFisherClustering 

strategy due to its ability to handle multi-type features. It is important to highlight that obtaining 

an adequate clustering homogeneity is mandatory to guarantee a good classification 

performance. To this end, we executed MultiTypeFisherClustering to find a set of feature 

clusters (G) that ensures the minimization of the dispersion of the global significance ( G ). For 

reducing computational requirements we limit the maximum number of clusters included in G to 

50 and plotted the best G  achieved with regard of the number of clusters included in G (Figure 

2). As can be seen from Figure 2, when grouping the binary features into two clusters, the 

lowest dispersion is achieved. However, the usage of 41 clusters provided the worst dispersion 

results. Moreover, a deep analysis of the results depicted in Figure 2 shows two particular 

aspects: (i) the high dependence between the dispersion and number of cluster divisions, (ii) 

abrupt changes in the dispersion values for contiguous clustering configurations and (iii) the 

dispersion is worsened with the increment of the number of clusters (and therefore the limitation 

of 50 clusters for the configuration seems adequate). 
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Figure 2. Dispersion plot for first 50 feature clustering divisions. 

In view of the achieved results, the usage of two clusters is the best configuration to minimize 

the dispersion of the global significance between feature clusters. Following our method, an 

additional cluster is created to allocate the remaining features (continuous and discrete ones). 

Finally, non-binary features having constant values were ignored in the classification process, 

because they are useless. 

The second step (model building and hyper-parameter optimization) is executed for each of the 

three previously obtained clusters. Figures 3 and 4 show the performance results achieved for 

each optimized ML model using PPV and MCC measures as objective functions, respectively. 
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a) Performance achieved for cluster 1 of 3 (binary features). 
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b) Performance achieved for cluster 2 of 3 (binary features). 
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c) Performance achieved for cluster 3 of 3 (non-binary features). 

Figure 3. Performance plot of each ML model for PPV scenario. 

As can be noted from results plotted in Figure 3, the performance of each ML model is closely 

related to the features included in each cluster. Figure 3a svmRadialWeights reveals the great 

classification performance achieved by svmRadialWeigths classifier (0.975) while AdaBag 

obtains the worst performance evaluation (0.634). With regard to second feature cluster (see 

Figure 3b), the best-analyzed model is Adabag (0.978) whilst rpart1SE achieves the poorest 

evaluation (0.720). Finally, as shown in Figure 3c (third cluster) svmRadialWeights and hdda 

models achieved the best (0.996) and worst (0.730) performance values, respectively.  

Table 5 summarizes the best ML models and hyper-parameter values for each feature cluster. 

Although svmRadialWeights achieves the highest performance results in two feature clusters, 
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the optimized configurations computed for each of them are significantly different due to their 

intrinsic characteristics. 

Table 5. Hyper-parameter configuration for best ML models using PPV measure. 

Cluster number M.L. model Model hyper-parameter values 

Cluster 1 svmRadialWeights 

sigma 0.005277482 

C 1.780091 

weights 13.66537 

Cluster 2 AdaBag 
maxdepth 1 

mfinal 50 

Cluster 3 svmRadialWeights 

sigma 0.02495968 

C 0.3483489 

weights 13.47197 

Figure 4 shows the best performance achieved by ML models using MCC measure to optimize 

classifier parameters. 
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a) Performance achieved for cluster 1 of 3 (binary features). 
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b) Performance achieved for cluster 2 of 3 (binary features). 
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c) Performance achieved for cluster 3 of 3 (binary features). 

Figure 4. Performance plot of each ML model for MCC scenario. 

A brief glance at results included in Figure 4 reveals ranger as the model with the best 

performance for all clusters. Among the other models, naive_bayes (clusters one and two) and 

hdda (in cluster three) achieved the worst evaluation results. Table 6 shows a brief summary of 

the best configuration obtained for ranger for each cluster. 
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Table 6. Hyper-parameter configuration for best ML models using MCC measure. 

Cluster number ML model Model hyper-parameter values 

Cluster 1 ranger 

mtry 1026 

splitrule extratrees 

min.node.size 1 

Cluster 2 ranger 

mtry 45 

splitrule extratrees 

min.node.size 1 

Cluster 3 ranger 

mtry 2 

splitrule extratrees 

min.node.size 1 

As in the previous scenario (PPV), although ranger model achieves the best performance, the 

specific configuration details to achieve the best performance for each feature cluster are quite 

different. 

During the third stage, configurations achieved in previous stages are benchmarked against 

simple and ensemble ML classifiers. As stated before, there are three different classifiers (with 

their particular outputs) for each scenario (PPV and MCC) and therefore, the final simple 

classification result for each instance is computed by executing a majority-voting system over 

the results achieved by each classification model. The primary outcome of the third stage of 

each scenario comprises the set of confusion matrices achieved that are included in Table 7. 

The confusion matrix brings together the number of different types of errors and hits including: 

(i) false positive errors (FP, inactive compounds classified as active); (ii) false negative errors 

(FN, undetected active compounds); (iii) true positive hits (TP, number of active compounds 

detected); and (iv) true negative hits (TN, number of inactive compounds correctly classified).  

Table 7. Confusion matrix for PPV and MCC measures 

 Reference 

 
Prediction 

PPV MCC 

Active Inactive Active Inactive 

Active 477 382 470 51 

Inactive 3 120 34 427 



25 

 

As reflected from analysis of Table 7, the usage of PPV measure as objective function allows 

minimizing FP errors at expenses of penalizing the FN ones. The difficulty of finding active 

compounds in the drugs discovery domain forces the need of minimizing misclassification of 

potential drug candidates as inactive compounds (FP errors). On the other hand, the usage of 

MCC allows achieving a balanced value between FP and FN errors. In fact, MCC reduces the 

number of FN errors up to 3.5 times but increases the FP errors up to 18 times when compared 

to PPV measure. Taking this fact into account, this measure is suitable for usage in 

environments where available resources are limited (mainly personal and monetary) and the 

emergence of FP errors does not cause major problems. 

To facilitate the understanding of results included in Table 7, Figure 5 presents a plot including 

the Accuracy, MCC and PPV measures obtained for each objective function, MCC and PPV, 

respectively. 

 

Figure 5. Performance comparison plot for both analyzed objective functions. 

As can be observed from Figure 5, using MCC as objective function allows to achieve the best 

Accuracy evaluations due to its good performance when classifying inactive compounds and a 

good MCC assessment (0.8271 indicates a very strong positive relationship). Otherwise, using 

PPV as objective function enables achieving the highest PPV results (0.9937) and a quite good 

MCC evaluation (0.9327). In view of the obtained results, it is easy to highlight the importance of 

choosing a problem-oriented objective function to achieve the most suitable results.  

With the aim of showing the performance gained during the classification stage, we included in 

Figure 6 a graphical plot highlighting the classification performance achieved for each objective 

function during both training and testing stages. 
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a) PPV evaluation achieved in stages 2 and 3 
(PPV scenario) 

b) MCC evaluation achieved in stages 2 and 3 
(MCC scenario) 

Figure 6. Performance comparison for PPV and MCC scenario. 

As can be seen from Figure 6, the classification performance achieved after applying the 

majority-voting system (indicated as stripped lines) outperforms the results achieved during the 

training stage. In fact, despite using for testing purposes a dataset never used during previous 

stages, for MCC (see Figure 6a) classification performance was able to significantly improve 

best training result (achieved by cluster 2) up to 0.176, while classification performance 

achieved by PPV improved up to 0.016 the result obtained by cluster 2 (see Figure 6b). 

Finally, we performed an experimental benchmarking to assess the suitability of our model 

against a single best performing ML classification model. In order to simulate the same 

conditions as used when executing the D2-MCS experimental protocol, classification models 

described in Table 2 were optimized (with hyper-parameter configuration) using a 

straightforward 10-fold cross-validation strategy applied over the whole features set composed 

of the first three dataset parts (splits 1, 2 and 3). Then, using the optimized configuration, 

models were trained using all instances included in the same splits. From all models in each 

scenario, we selected the one achieving the best classification performance over the remaining 

dataset instances (split 4) and compared it with D2-MCS. Below, Table 8 shows the 

performance results achieved for the best single classifier and D2-MCS. In order to enhance the 

comparison between models, Table 8 includes the performance result achieved for both models 

during the optimization/training and testing stages (for MCC and PPV scenario).  

Table 8. Performance comparison between D2-MCS and the best single classifiers. 

Objective 
function 

Model 
Cluster 
number 

Performance measures 

MCC PPV 

Optim.
and 

Train 
Test 

Optim.
and 

Train 
Test 

MCC D2-MCS ranger 1 0.6460 0.8271 ̶ ̶ 
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ranger 2 0.6510 
(+0.176) 

̶ 

ranger 3 0.6299 ̶ 

Single 
classifier 

ranger ̶ 0.6644 0.6609 
(-0.0035) 

̶ ̶ 

PPV 

D2-MCS 

svmRadialWeights 1 ̶ 

̶ 

0.9743 

0.9937 
(+0.016) 

AdaBag 2 ̶ 0.9777 

svmRadialWeights 3 ̶ 0.9555 

Single 
classifier 

svmRadialWeights ̶ ̶ ̶ 0.9989 0.9580 
(-0.0409) 

As can be seen from Table 8, D2-MCS outperforms the best classification model in each 

cluster. As the execution of training/optimization stage in D2-MCS provides three different 

performance values (one for each classifier), we computed the performance differential value 

(included in brackets) as the difference between the result achieved in the testing stage and the 

maximum value reached during the training/optimization stage. The positive performance 

difference value achieved by D2-MCS (highlighted in green) indicates the ability to build a 

suitable knowledge-generalization model. Conversely, although the usage of a single 

classification model achieves adequate performance results during the training/optimization 

stage, the negative value of the performance difference (highlighted in red) for both scenarios 

(using PPV and MCC as objective functions) shows a clear overfitting trend. 

5. Conclusions and future work 

This work presents D2-MCS, an MCS tool designed to automatically determine the biological 

activity of molecules based on 2048 chemical substructures (codified using binary values) and 

84 physicochemical properties (codified using discrete and continuous values). To successfully 

address the manipulation of this high-dimensional dataset, D2-MCS performs a 3-stage 

classification process comprised by: (i) feature clustering, (ii) building and optimizing hyper-

parameters of a classification model and (iii) molecule classification. Additionally, we performed 

an experimental benchmarking comprising two scenarios (using PPV and MCC measures as 

objective functions) in order to measure the suitability of our D2-MCS tool. Finally, we performed 

a comparative analysis to assess the suitability of our model against the results achieved by the 

usage of simple and ensemble ML classifiers.  

Results shown in Section 4 reveal the greater performance of our proposed approach against 

other single and ensemble ML classifiers (see Table 8). Moreover, the comparison of results 

achieved during training/optimization (2) and testing (3) stages, also suggests the suitability of 

D2-MCS to generalize knowledge and avoid overfitting problems. Furthermore, although the 

usage of a single classifier achieves better performance during the training/optimization stage, 
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the reduced classification performance achieved during the testing stage shows a clear 

overfitting trend.  

The promising results achieved by our D2-MCS tool are sustained in two key features: (i) 

splitting the dataset into groups of features (using feature clustering methods), facilitates both 

the handling of the information and the classification training tasks (divide and rule strategy) and 

(ii) the incorporation of an objective function able to choose the most suitable classifier 

according to the problem to be addressed. 

Finally, and despite the performance achieved by using our tool, we are sure that new 

improvements are still necessary to strengthen D2-MCS. We use a majority-voting system to 

obtain the final decision concerning the biological activity of each molecule. We are aware that 

using evolutionary strategies (such as Genetic Algorithms) could increase the performance of 

the classification system by designing an intelligent weighing mechanism for each cluster 

(Friese, Bartz-Beielstein, & Emmerich, 2016). Furthermore, assessing the dependence between 

features could be addressed by using other feature evaluation methods used for ranking in the 

context of feature selection (such as Information Gain or χ2) (Zheng, Wu, & Srihari, 2004). 

Moreover, the research and usage of domain-specific feature clustering methods should also be 

included in future work. In fact, the vast amount of domain-specific information in the data sets 

suggests that the usage of problem-oriented data management techniques is useful for both (i) 

facilitating information processing and (ii) building classification systems able to adapt to new 

knowledge with the minimum loss of accuracy. To this end, the development of new problem-

oriented clustering methods should help to increase the classification performance of our 

proposed tool. Finally, we are aware of the applicability of D2-MCS in many other disciplines, 

such as the classification of content in general-purpose databases.  
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