Please use this identifier to cite or link to this item: http://hdl.handle.net/10071/9338
Author(s): Raposo, F.
Ribeiro, R.
de Matos, D. M.
Date: 2015
Title: On the application of generic summarization algorithms to music
Volume: 22
Number: 1
Pages: 26 - 30
ISSN: 1070-9908
DOI (Digital Object Identifier): 10.1109/LSP.2014.2347582
Keywords: Automatic music summarization
Generic summarization algorithms
Abstract: Several generic summarization algorithms were developed in the past and successfully applied in fields such as text and speech summarization. In this paper, we review and apply these algorithms to music. To evaluate their performance, we adopt an extrinsic approach: we compare a Fado genre classifier's performance using truncated contiguous clips against the summaries extracted with those algorithms on two different datasets. We show that Maximal Marginal Relevance (MMR), LexRank, and Latent Semantic Analysis (LSA) all improve classification performance in both datasets used for testing.
Peerreviewed: yes
Access type: Open Access
Appears in Collections:CTI-RI - Artigos em revistas científicas internacionais com arbitragem científica

Files in This Item:
File Description SizeFormat 
IEEE_Signal_Processing_Letters.pdfPré-print156,94 kBAdobe PDFView/Open


FacebookTwitterDeliciousLinkedInDiggGoogle BookmarksMySpaceOrkut
Formato BibTex mendeley Endnote Logotipo do DeGóis Logotipo do Orcid 

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.