Utilize este identificador para referenciar este registo: http://hdl.handle.net/10071/36082
Autoria: Sezavar, A.
Brites, C.
Ascenso, J.
Data: 2024
Título próprio: Learning-based lossless event data compression
Título e volume do livro: 2024 IEEE International Conference on Visual Communications and Image Processing, VCIP 2024
Título do evento: 2024 IEEE International Conference on Visual Communications and Image Processing (VCIP)
Referência bibliográfica: Sezavar, A., Brites, C., & Ascenso, J. (2024). Learning-based lossless event data compression. 2024 IEEE International Conference on Visual Communications and Image Processing, VCIP 2024. IEEE. https://doi.org/10.1109/VCIP63160.2024.10849853
ISSN: 1018-8770
ISBN: 979-8-3315-2954-3
DOI (Digital Object Identifier): 10.1109/VCIP63160.2024.10849853
Palavras-chave: Event cameras
Compression
Lossless
Octree
Hyperprior
Resumo: Emerging event cameras acquire visual information by detecting time domain brightness changes asynchronously at the pixel level and, unlike conventional cameras, are able to provide high temporal resolution, very high dynamic range, low latency, and low power consumption. Considering the huge amount of data involved, efficient compression solutions are very much needed. In this context, this paper presents a novel deep-learning-based lossless event data compression scheme based on octree partitioning and a learned hyperprior model. The proposed method arranges the event stream as a 3D volume and employs an octree structure for adaptive partitioning. A deep neural network-based entropy model, using a hyperprior, is then applied. Experimental results demonstrate that the proposed method outperforms traditional lossless data compression techniques in terms of compression ratio and bits per event.
Arbitragem científica: yes
Acesso: Acesso Embargado
Aparece nas coleções:IT-CRI - Comunicações a conferências internacionais

Ficheiros deste registo:
Ficheiro TamanhoFormato 
conferenceObject_108755.pdf
  Restricted Access
421,19 kBAdobe PDFVer/Abrir Request a copy


FacebookTwitterDeliciousLinkedInDiggGoogle BookmarksMySpaceOrkut
Formato BibTex mendeley Endnote Logotipo do DeGóis Logotipo do Orcid 

Todos os registos no repositório estão protegidos por leis de copyright, com todos os direitos reservados.