Utilize este identificador para referenciar este registo:
http://hdl.handle.net/10071/36082Registo completo
| Campo DC | Valor | Idioma |
|---|---|---|
| dc.contributor.author | Sezavar, A. | - |
| dc.contributor.author | Brites, C. | - |
| dc.contributor.author | Ascenso, J. | - |
| dc.date.accessioned | 2026-01-22T09:34:05Z | - |
| dc.date.issued | 2024 | - |
| dc.identifier.citation | Sezavar, A., Brites, C., & Ascenso, J. (2024). Learning-based lossless event data compression. 2024 IEEE International Conference on Visual Communications and Image Processing, VCIP 2024. IEEE. https://doi.org/10.1109/VCIP63160.2024.10849853 | - |
| dc.identifier.isbn | 979-8-3315-2954-3 | - |
| dc.identifier.issn | 1018-8770 | - |
| dc.identifier.uri | http://hdl.handle.net/10071/36082 | - |
| dc.description.abstract | Emerging event cameras acquire visual information by detecting time domain brightness changes asynchronously at the pixel level and, unlike conventional cameras, are able to provide high temporal resolution, very high dynamic range, low latency, and low power consumption. Considering the huge amount of data involved, efficient compression solutions are very much needed. In this context, this paper presents a novel deep-learning-based lossless event data compression scheme based on octree partitioning and a learned hyperprior model. The proposed method arranges the event stream as a 3D volume and employs an octree structure for adaptive partitioning. A deep neural network-based entropy model, using a hyperprior, is then applied. Experimental results demonstrate that the proposed method outperforms traditional lossless data compression techniques in terms of compression ratio and bits per event. | eng |
| dc.language.iso | eng | - |
| dc.publisher | IEEE | - |
| dc.relation | PTDC/EEICOM/7775/2020 | - |
| dc.relation.ispartof | 2024 IEEE International Conference on Visual Communications and Image Processing, VCIP 2024 | - |
| dc.rights | embargoedAccess | - |
| dc.subject | Event cameras | eng |
| dc.subject | Compression | eng |
| dc.subject | Lossless | eng |
| dc.subject | Octree | eng |
| dc.subject | Hyperprior | eng |
| dc.title | Learning-based lossless event data compression | eng |
| dc.type | conferenceObject | - |
| dc.event.title | 2024 IEEE International Conference on Visual Communications and Image Processing (VCIP) | - |
| dc.event.type | Conferência | pt |
| dc.event.location | Tokyo | eng |
| dc.event.date | 2024 | - |
| dc.peerreviewed | yes | - |
| dc.date.updated | 2026-01-22T09:30:52Z | - |
| dc.description.version | info:eu-repo/semantics/acceptedVersion | - |
| dc.identifier.doi | 10.1109/VCIP63160.2024.10849853 | - |
| dc.subject.fos | Domínio/Área Científica::Ciências Naturais::Ciências da Computação e da Informação | por |
| dc.subject.fos | Domínio/Área Científica::Engenharia e Tecnologia::Engenharia Eletrotécnica, Eletrónica e Informática | por |
| dc.date.embargo | 2026-07-26 | - |
| iscte.identifier.ciencia | https://ciencia.iscte-iul.pt/id/ci-pub-108755 | - |
| iscte.alternateIdentifiers.wos | WOS:WOS:001431710700052 | - |
| iscte.alternateIdentifiers.scopus | 2-s2.0-85218210774 | - |
| Aparece nas coleções: | IT-CRI - Comunicações a conferências internacionais | |
Ficheiros deste registo:
| Ficheiro | Tamanho | Formato | |
|---|---|---|---|
| conferenceObject_108755.pdf Restricted Access | 421,19 kB | Adobe PDF | Ver/Abrir Request a copy |
Todos os registos no repositório estão protegidos por leis de copyright, com todos os direitos reservados.












