Utilize este identificador para referenciar este registo: http://hdl.handle.net/10071/36082
Registo completo
Campo DCValorIdioma
dc.contributor.authorSezavar, A.-
dc.contributor.authorBrites, C.-
dc.contributor.authorAscenso, J.-
dc.date.accessioned2026-01-22T09:34:05Z-
dc.date.issued2024-
dc.identifier.citationSezavar, A., Brites, C., & Ascenso, J. (2024). Learning-based lossless event data compression. 2024 IEEE International Conference on Visual Communications and Image Processing, VCIP 2024. IEEE. https://doi.org/10.1109/VCIP63160.2024.10849853-
dc.identifier.isbn979-8-3315-2954-3-
dc.identifier.issn1018-8770-
dc.identifier.urihttp://hdl.handle.net/10071/36082-
dc.description.abstractEmerging event cameras acquire visual information by detecting time domain brightness changes asynchronously at the pixel level and, unlike conventional cameras, are able to provide high temporal resolution, very high dynamic range, low latency, and low power consumption. Considering the huge amount of data involved, efficient compression solutions are very much needed. In this context, this paper presents a novel deep-learning-based lossless event data compression scheme based on octree partitioning and a learned hyperprior model. The proposed method arranges the event stream as a 3D volume and employs an octree structure for adaptive partitioning. A deep neural network-based entropy model, using a hyperprior, is then applied. Experimental results demonstrate that the proposed method outperforms traditional lossless data compression techniques in terms of compression ratio and bits per event.eng
dc.language.isoeng-
dc.publisherIEEE-
dc.relationPTDC/EEICOM/7775/2020-
dc.relation.ispartof2024 IEEE International Conference on Visual Communications and Image Processing, VCIP 2024-
dc.rightsembargoedAccess-
dc.subjectEvent cameraseng
dc.subjectCompressioneng
dc.subjectLosslesseng
dc.subjectOctreeeng
dc.subjectHyperprioreng
dc.titleLearning-based lossless event data compressioneng
dc.typeconferenceObject-
dc.event.title2024 IEEE International Conference on Visual Communications and Image Processing (VCIP)-
dc.event.typeConferênciapt
dc.event.locationTokyoeng
dc.event.date2024-
dc.peerreviewedyes-
dc.date.updated2026-01-22T09:30:52Z-
dc.description.versioninfo:eu-repo/semantics/acceptedVersion-
dc.identifier.doi10.1109/VCIP63160.2024.10849853-
dc.subject.fosDomínio/Área Científica::Ciências Naturais::Ciências da Computação e da Informaçãopor
dc.subject.fosDomínio/Área Científica::Engenharia e Tecnologia::Engenharia Eletrotécnica, Eletrónica e Informáticapor
dc.date.embargo2026-07-26-
iscte.identifier.cienciahttps://ciencia.iscte-iul.pt/id/ci-pub-108755-
iscte.alternateIdentifiers.wosWOS:WOS:001431710700052-
iscte.alternateIdentifiers.scopus2-s2.0-85218210774-
Aparece nas coleções:IT-CRI - Comunicações a conferências internacionais

Ficheiros deste registo:
Ficheiro TamanhoFormato 
conferenceObject_108755.pdf
  Restricted Access
421,19 kBAdobe PDFVer/Abrir Request a copy


FacebookTwitterDeliciousLinkedInDiggGoogle BookmarksMySpaceOrkut
Formato BibTex mendeley Endnote Logotipo do DeGóis Logotipo do Orcid 

Todos os registos no repositório estão protegidos por leis de copyright, com todos os direitos reservados.