Utilize este identificador para referenciar este registo: http://hdl.handle.net/10071/35938
Registo completo
Campo DCValorIdioma
dc.contributor.authorTasmurzayev, N.-
dc.contributor.authorAmangeldy, B.-
dc.contributor.authorImankulov, T.-
dc.contributor.authorImanbek, B.-
dc.contributor.authorPostolache, O. A.-
dc.contributor.authorKonysbekova, A.-
dc.date.accessioned2026-01-14T11:42:23Z-
dc.date.available2026-01-14T11:42:23Z-
dc.date.issued2025-
dc.identifier.citationTasmurzayev, N., Amangeldy, B., Imankulov, T., Imanbek, B., Postolache, O. A., & Konysbekova, A. (2025). A wearable IoT-based measurement system for real-time cardiovascular risk prediction using heart rate variability. Eng, 6(10), Article 259. https://doi.org/10.3390/eng6100259-
dc.identifier.issn2673-4117-
dc.identifier.urihttp://hdl.handle.net/10071/35938-
dc.description.abstractCardiovascular diseases (CVDs) remain the leading cause of global mortality, with ischemic heart disease (IHD) being the most prevalent and deadly subtype. The growing burden of IHD underscores the urgent need for effective early detection methods that are scalable and non-invasive. Heart Rate Variability (HRV), a non-invasive physiological marker influenced by the autonomic nervous system (ANS), has shown clinical relevance in predicting adverse cardiac events. This study presents a photoplethysmography (PPG)-based Zhurek IoT device, a custom-developed Internet of Things (IoT) device for non-invasive HRV monitoring. The platform’s effectiveness was evaluated using HRV metrics from electrocardiography (ECG) and PPG signals, with machine learning (ML) models applied to the task of early IHD risk detection. ML classifiers were trained on HRV features, and the Random Forest (RF) model achieved the highest classification accuracy of 90.82%, precision of 92.11%, and recall of 91.00% when tested on real data. The model demonstrated excellent discriminative ability with an area under the ROC curve (AUC) of 0.98, reaching a sensitivity of 88% and specificity of 100% at its optimal threshold. The preliminary results suggest that data collected with the “Zhurek” IoT devices are promising for the further development of ML models for IHD risk detection. This study aimed to address the limitations of previous work, such as small datasets and a lack of validation, by utilizing real and synthetically augmented data (conditional tabular GAN (CTGAN)), as well as multi-sensor input (ECG and PPG). The findings of this pilot study can serve as a starting point for developing scalable, remote, and cost-effective screening systems. The further integration of wearable devices and intelligent algorithms is a promising direction for improving routine monitoring and advancing preventative cardiology.eng
dc.language.isoeng-
dc.publisherMDPI-
dc.relationAP26103523-
dc.rightsopenAccess-
dc.subjectIschemic heart diseaseeng
dc.subjectHeart rate variabilityeng
dc.subjectCardiovascular diseaseseng
dc.subjectWearable technologyeng
dc.subjectMachine learningeng
dc.subjectIoT deviceeng
dc.subjectHealth monitoringeng
dc.subjectRisk predictioneng
dc.titleA wearable IoT-based measurement system for real-time cardiovascular risk prediction using heart rate variabilityeng
dc.typearticle-
dc.peerreviewedyes-
dc.volume6-
dc.number10-
dc.date.updated2026-01-14T11:40:38Z-
dc.description.versioninfo:eu-repo/semantics/publishedVersion-
dc.identifier.doi10.3390/eng6100259-
dc.subject.fosDomínio/Área Científica::Engenharia e Tecnologia::Engenharia Civilpor
dc.subject.fosDomínio/Área Científica::Engenharia e Tecnologia::Outras Engenharias e Tecnologiaspor
dc.subject.fosDomínio/Área Científica::Engenharia e Tecnologia::Engenharia Químicapor
iscte.identifier.cienciahttps://ciencia.iscte-iul.pt/id/ci-pub-115121-
iscte.alternateIdentifiers.wosWOS:WOS:001601409000001-
iscte.alternateIdentifiers.scopus2-s2.0-105020021473-
iscte.journalEng-
Aparece nas coleções:IT-RI - Artigos em revistas científicas internacionais com arbitragem científica

Ficheiros deste registo:
Ficheiro TamanhoFormato 
article_115121.pdf3,24 MBAdobe PDFVer/Abrir


FacebookTwitterDeliciousLinkedInDiggGoogle BookmarksMySpaceOrkut
Formato BibTex mendeley Endnote Logotipo do DeGóis Logotipo do Orcid 

Todos os registos no repositório estão protegidos por leis de copyright, com todos os direitos reservados.