Utilize este identificador para referenciar este registo:
http://hdl.handle.net/10071/35938Registo completo
| Campo DC | Valor | Idioma |
|---|---|---|
| dc.contributor.author | Tasmurzayev, N. | - |
| dc.contributor.author | Amangeldy, B. | - |
| dc.contributor.author | Imankulov, T. | - |
| dc.contributor.author | Imanbek, B. | - |
| dc.contributor.author | Postolache, O. A. | - |
| dc.contributor.author | Konysbekova, A. | - |
| dc.date.accessioned | 2026-01-14T11:42:23Z | - |
| dc.date.available | 2026-01-14T11:42:23Z | - |
| dc.date.issued | 2025 | - |
| dc.identifier.citation | Tasmurzayev, N., Amangeldy, B., Imankulov, T., Imanbek, B., Postolache, O. A., & Konysbekova, A. (2025). A wearable IoT-based measurement system for real-time cardiovascular risk prediction using heart rate variability. Eng, 6(10), Article 259. https://doi.org/10.3390/eng6100259 | - |
| dc.identifier.issn | 2673-4117 | - |
| dc.identifier.uri | http://hdl.handle.net/10071/35938 | - |
| dc.description.abstract | Cardiovascular diseases (CVDs) remain the leading cause of global mortality, with ischemic heart disease (IHD) being the most prevalent and deadly subtype. The growing burden of IHD underscores the urgent need for effective early detection methods that are scalable and non-invasive. Heart Rate Variability (HRV), a non-invasive physiological marker influenced by the autonomic nervous system (ANS), has shown clinical relevance in predicting adverse cardiac events. This study presents a photoplethysmography (PPG)-based Zhurek IoT device, a custom-developed Internet of Things (IoT) device for non-invasive HRV monitoring. The platform’s effectiveness was evaluated using HRV metrics from electrocardiography (ECG) and PPG signals, with machine learning (ML) models applied to the task of early IHD risk detection. ML classifiers were trained on HRV features, and the Random Forest (RF) model achieved the highest classification accuracy of 90.82%, precision of 92.11%, and recall of 91.00% when tested on real data. The model demonstrated excellent discriminative ability with an area under the ROC curve (AUC) of 0.98, reaching a sensitivity of 88% and specificity of 100% at its optimal threshold. The preliminary results suggest that data collected with the “Zhurek” IoT devices are promising for the further development of ML models for IHD risk detection. This study aimed to address the limitations of previous work, such as small datasets and a lack of validation, by utilizing real and synthetically augmented data (conditional tabular GAN (CTGAN)), as well as multi-sensor input (ECG and PPG). The findings of this pilot study can serve as a starting point for developing scalable, remote, and cost-effective screening systems. The further integration of wearable devices and intelligent algorithms is a promising direction for improving routine monitoring and advancing preventative cardiology. | eng |
| dc.language.iso | eng | - |
| dc.publisher | MDPI | - |
| dc.relation | AP26103523 | - |
| dc.rights | openAccess | - |
| dc.subject | Ischemic heart disease | eng |
| dc.subject | Heart rate variability | eng |
| dc.subject | Cardiovascular diseases | eng |
| dc.subject | Wearable technology | eng |
| dc.subject | Machine learning | eng |
| dc.subject | IoT device | eng |
| dc.subject | Health monitoring | eng |
| dc.subject | Risk prediction | eng |
| dc.title | A wearable IoT-based measurement system for real-time cardiovascular risk prediction using heart rate variability | eng |
| dc.type | article | - |
| dc.peerreviewed | yes | - |
| dc.volume | 6 | - |
| dc.number | 10 | - |
| dc.date.updated | 2026-01-14T11:40:38Z | - |
| dc.description.version | info:eu-repo/semantics/publishedVersion | - |
| dc.identifier.doi | 10.3390/eng6100259 | - |
| dc.subject.fos | Domínio/Área Científica::Engenharia e Tecnologia::Engenharia Civil | por |
| dc.subject.fos | Domínio/Área Científica::Engenharia e Tecnologia::Outras Engenharias e Tecnologias | por |
| dc.subject.fos | Domínio/Área Científica::Engenharia e Tecnologia::Engenharia Química | por |
| iscte.identifier.ciencia | https://ciencia.iscte-iul.pt/id/ci-pub-115121 | - |
| iscte.alternateIdentifiers.wos | WOS:WOS:001601409000001 | - |
| iscte.alternateIdentifiers.scopus | 2-s2.0-105020021473 | - |
| iscte.journal | Eng | - |
| Aparece nas coleções: | IT-RI - Artigos em revistas científicas internacionais com arbitragem científica | |
Ficheiros deste registo:
| Ficheiro | Tamanho | Formato | |
|---|---|---|---|
| article_115121.pdf | 3,24 MB | Adobe PDF | Ver/Abrir |
Todos os registos no repositório estão protegidos por leis de copyright, com todos os direitos reservados.












