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Abstract

Cardiovascular diseases (CVDs) remain the leading cause of global mortality, with ischemic
heart disease (IHD) being the most prevalent and deadly subtype. The growing burden of
IHD underscores the urgent need for effective early detection methods that are scalable and
non-invasive. Heart Rate Variability (HRV), a non-invasive physiological marker influenced
by the autonomic nervous system (ANS), has shown clinical relevance in predicting adverse
cardiac events. This study presents a photoplethysmography (PPG)-based Zhurek IoT de-
vice, a custom-developed Internet of Things (IoT) device for non-invasive HRV monitoring.
The platform’s effectiveness was evaluated using HRV metrics from electrocardiography
(ECG) and PPG signals, with machine learning (ML) models applied to the task of early
IHD risk detection. ML classifiers were trained on HRV features, and the Random Forest
(RF) model achieved the highest classification accuracy of 90.82%, precision of 92.11%, and
recall of 91.00% when tested on real data. The model demonstrated excellent discriminative
ability with an area under the ROC curve (AUC) of 0.98, reaching a sensitivity of 88%
and specificity of 100% at its optimal threshold. The preliminary results suggest that data
collected with the “Zhurek” IoT devices are promising for the further development of ML
models for IHD risk detection. This study aimed to address the limitations of previous
work, such as small datasets and a lack of validation, by utilizing real and synthetically aug-
mented data (conditional tabular GAN (CTGAN)), as well as multi-sensor input (ECG and
PPG). The findings of this pilot study can serve as a starting point for developing scalable,
remote, and cost-effective screening systems. The further integration of wearable devices
and intelligent algorithms is a promising direction for improving routine monitoring and
advancing preventative cardiology.

Keywords: ischemic heart disease; heart rate variability; cardiovascular diseases; wearable
technology; machine learning; IoT device; health monitoring; risk prediction

1. Introduction
CVDs are the leading cause of death worldwide. According to estimates by the World

Health Organization, in 2019, 17.9 million people died from CVDs, accounting for 32% of
all global deaths. Of these deaths, 85% were due to heart attacks and strokes. Among
the 17 million premature deaths (under the age of 70) from non-communicable diseases
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recorded in 2019, 38% were caused by CVDs [1]. IHD is one of the most common forms of
CVD and a major cause of mortality [2]. According to 2022 data, diseases of the circulatory
system are the most prevalent among the adult population of Kazakhstan, with 3962.5 cases
per 100,000 population. Of these, IHD accounts for 560.7 cases per 100,000 population.
These figures confirm the high prevalence of IHD within the structure of cardiovascular
pathology [3].

IHD continues to pose a significant burden on individuals and healthcare systems
worldwide. The impact of this condition is considerable, contributing substantially to both
mortality and morbidity [4]. Coronary artery disease (CAD), most commonly resulting
from atherosclerosis, is the leading cause of IHD, which manifests as myocardial ischemia.
The primary mechanism underlying IHD is obstructive atherosclerosis of the coronary
arteries, leading to impaired blood flow to the heart muscle [5]. Increasingly, sleep health
is recognized as a critical, modifiable risk factor for CVD. Poor sleep quality, insufficient
duration, and disorders like obstructive sleep apnea directly contribute to the progression
of atherosclerosis and hypertension through mechanisms involving systemic inflammation,
endothelial dysfunction, and sympathetic nervous system overactivity. Given the growing
global demand on healthcare systems, there is an urgent need to develop early risk stratifi-
cation tools capable of identifying individuals at high risk for IHD before the occurrence of
irreversible complications such as myocardial infarction or chronic heart failure (CHF) [6].

HRV is defined as the fluctuation in the duration of cardiac cycles [7]. It is a non-
invasive indicator obtained through heart rhythm monitoring that provides valuable
insights into the overall health status of the body [8]. HRV reflects the dynamic capacity
of the heart and the general physiological ability of an individual to adapt to varying
environmental conditions through compensatory mechanisms [9]. It is directly influenced
by the primitive components of the ANS, particularly the parasympathetic branch, and
also reflects the combined activity of both the sympathetic and parasympathetic divisions.
Low HRV values have been associated with adverse cardiac events such as myocardial
infarction, atherosclerosis progression, heart failure, IHD, and sudden cardiac death [10].
HRV analysis is essential for assessing the functional state of the ANS [11].

Current clinical tests used to assess coronary health are often expensive, invasive,
and insufficiently effective for the timely detection of progressing coronary ischemic con-
ditions [12]. Although analytical angiography is considered one of the most accurate
procedures for identifying heart abnormalities, it is associated with high costs, potential
side effects, and requires significant technological expertise. Traditional diagnostic methods
are time-consuming, prone to human error, and may lead to inaccurate diagnoses, making
them costly and labor-intensive [13]. HRV analysis emerges as a promising non-invasive
alternative, as HRV is a recognized indicator of autonomic imbalance and a predictor of
adverse cardiac events, and low HRV values have been directly linked to IHD. However,
the standard diagnosis of HRV is based on 24 h Holter ECG, which limits its widespread
use. Such conventional ECG systems require clinical supervision and meticulous electrode
placement, which increase operating costs and inconvenience users. Against this backdrop,
PPG has attracted particular attention, offering a significantly cheaper and more convenient
alternative to ECG for continuous heart monitoring.

While the link between HRV and CVDs is well established, a practical method for
IHD screening with consumer-grade PPG sensors is still lacking and the most informative
HRV biomarkers obtainable from such devices have yet to be defined. To fill this gap, the
present pilot introduces Zhurek, a fingertip PPG device designed in-house that performs
on-board, real-time analysis of HRV metrics and securely streams the data to a cloud repos-
itory. Bench tests against a three-lead Holter ECG show clinically acceptable differences
of −0.601 bpm for mean heart rate (HR), +33.1 ms for standard deviation of NN intervals
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(SDNN), and −4.8 ms for root mean square of successive differences (RMSSDs). Using
Zhurek, HRV recordings were collected from patients drawn from the Cardiology center in
Almaty, Kazakhstan. Our findings indicate a strong link between HRV and IHD. Mutual
information analysis revealed that the frequency-domain features High frequency (HF) and
Low frequency (LF) have the highest statistical dependency on IHD status. To address a
limited sample size, we employed a CTGAN model to generate synthetic HRV data, suc-
cessfully expanding our dataset while preserving key statistical properties. We then trained
several ML classifiers on our dataset. The RF model demonstrated the best performance,
achieving an accuracy of 94% in distinguishing between individuals with and without IHD.
A SHAP analysis confirmed the importance of frequency-domain metrics, identifying HF
and LF as the most influential features for the model’s predictions. These results underscore
the potential of using ML with HRV analysis for the non-invasive detection of IHD. Our
pilot study shows that measurements obtained with an affordable PPG device allow for
the analysis of key HRV markers. While this method is not intended to replace the “gold
standard”—24 h Holter monitoring—it demonstrates the potential of low-cost wearable
sensors for HRV analysis. This lays the foundation for the development of future scalable
and cost-effective screening and monitoring systems for IHD.

2. Literature Review
CVDs remain the leading cause of morbidity and mortality worldwide, highlighting

the critical importance of early diagnosis in high-risk individuals and the development
of effective preventative and interventional strategies. The diagnosis of IHD remains a
complex challenge. Invasive coronary angiography is the “gold standard”; however, there
is a pressing need for non-invasive, rapid, and reliable alternatives [14,15]. In this context,
risk prediction methods play a key role, assessing the probability of future cardiovascular
events (myocardial infarction, mortality) based on risk factor analysis, which allows for
the identification of high-risk patients for timely intervention [16–18]. Recent research has
focused on creating multifactorial models that integrate physiological indicators, lifestyle
factors, and clinical history to improve risk assessment reliability and enable a more
personalized approach [19]. ML models offer a powerful tool for these tasks, effectively
integrating clinical variables, imaging data, and biomarkers to improve diagnostic and
prognostic accuracy [16,20,21].

HRV, which measures the variation in time intervals between consecutive heartbeats
(RR or NN intervals), is a non-invasive indicator widely used to assess cardiovascular
health [22]. In the context of IHD, reductions in the time-domain indices SDNN, RMSSDs,
and pNN50, along with changes in the low-frequency to high-frequency (LF/HF) ratio,
correlate with myocardial injury and a higher risk of adverse events, while imbalance
between LF and HF components reflects impaired autonomic regulation during ischemic
episodes. This review systematizes these key HRV parameters and underscores their
clinical relevance for monitoring and managing patients with IHD [6,23]. In patients
with IHD and arrhythmias, HRV metrics are significantly reduced compared to healthy
individuals. Notably, time-domain parameters such as SDNN, SDANN, RMSSD, pNN50,
and the triangular HRV index, along with non-linear measures like α, α1, α2, SD1, SD2,
Approximate Entropy (AppEn), and Sample Entropy (SampEn), show marked decreases
in these patients [24]. These changes reflect impaired autonomic regulation of the heart
and underline the utility of HRV analysis for evaluating cardiac function and disease
progression in IHD [22].

Traditionally, the assessment of cardiovascular function relies on ECG, which records
the heart’s electrical activity from the skin surface using electrodes [25]. Although con-
ventional ECG systems provide high accuracy, they require clinical supervision, careful
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electrode placement, and regular calibration, which increase operating costs and reduce
user convenience [25]. Over the past decade, growing demand for continuous, convenient,
and low-cost solutions has stimulated the search for alternative monitoring methods [26].
Against this background, PPG has attracted particular attention because of its simple
hardware implementation and easy integration into consumer devices, offering a cheaper
and more convenient option for continuous monitoring in both clinical and everyday
settings [27]. Breakthroughs in microelectronics and sensor technologies have led to the
miniaturization of PPG sensors and their integration into wristbands, smartwatches, mo-
bile phones, and in-ear devices, which has democratized access to continuous cardiac
monitoring [28]. The additional pairing of PPG with wireless data transmission and cloud
analytics provides a unique combination of affordability, portability, and convenience that
conventional ECG systems cannot fully deliver [29].

Deep learning models demonstrate outstanding effectiveness in analyzing ECG signals,
where they can automatically extract key features from raw data that distinguish normal
from ischemic patterns. Experimental studies confirm that such models can achieve a
classification accuracy exceeding 98% in distinguishing IHD and myocardial infarction
from healthy states by detecting minute deviations in ST-segment morphology and QRS
complex duration—key indicators of ischemia [30]. To enhance performance, hybrid
architectures combining convolutional (CNN) and recurrent (RNN) layers are used, which
capture both spatial and temporal dependencies in the data [31,32]. In addition to analyzing
the full ECG signal, ML algorithms are widely applied to classify condition-based HRV.
Among these, RF stands out for its effective handling of non-linear patterns, achieving an
accuracy of 95.1% in binary classification [33]. Additionally, K-nearest neighbors (KNN)
and decision trees (DTs) have shown high accuracy, up to 92.86%, in cardiovascular status
assessment tasks [34–36].

Along with ECG and PPG data, visual diagnostic data such as non-contrast CT, echocar-
diograms, and CT angiograms are increasingly analyzed using deep learning models. These
models form hierarchical representations of coronary artery anatomy, identifying subtle
changes in vessel caliber and myocardial wall motion [37,38]. Architectures like autoen-
coders compress multidimensional data to create interpretable latent features for further
analysis [38]. However, a major challenge in working with medical data is class imbalance,
where there are far fewer abnormal cases than normal ones. To address this, unsupervised
anomaly detection approaches are applied, such as k-means clustering, which segments
data by similarity metrics and flags deviating samples as potential anomalies, thereby im-
proving the performance of subsequent supervised classifiers [39]. Synthetic oversampling
is also used: traditional methods like SMOTE balance the classes and significantly improve
the performance of algorithms such as the support vector machine (SVM) [40]. Furthermore,
more modern approaches based on generative adversarial networks (GANs and CTGANs)
have shown even higher effectiveness compared to classic techniques, especially in SVM
and logistic regression classification models [31].

Despite advancements, several challenges remain. Linear methods for HRV analy-
sis have limited sensitivity and fail to detect complex patterns in physiological signals.
Modified non-linear methods demonstrate greater effectiveness in identifying atypical
patterns, including U-shaped dependencies [41]. In the domain of ML, many studies lack
adequate consideration of model uncertainty, which is a critical aspect when using ML
algorithms. Neglecting this factor reduces the reliability of the results and limits their
reproducibility [33]. Furthermore, the relevance of some traditional diagnostic methods is
being questioned; for example, in a study focused on the diagnosis of IHD, the AUC value
for exercise testing was significantly lower compared to results obtained through the anal-
ysis of volatile organic compounds (VOCs). This indicates lower diagnostic relevance of
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exercise testing in this context [42]. Finally, several studies have only focused on short-term
outcomes. A study aimed at predicting stroke outcomes based on HRV indicators did not
consider long-term cardiovascular events.

3. Materials and Methods
3.1. System Description

The proposed hybrid physiological monitoring system is engineered for continuous
HRV analysis to enable the ambulatory assessment of ANS status. The system integrates
a wearable sensing device with on-device signal processing and remote data logging, as
shown in Figure 1.

 

Figure 1. Architecture and description of the system.

The system is composed of three integrated subsystems: the sensing and processing
module, the communication and storage layer, and the analytics and classification domain.
Bidirectional arrows indicate continuous data exchange and feedback between subsystems.

At the sensing module, the Zhurek IoT device is responsible for acquiring PPG signals
and computing core HRV metrics in real time. The device captures fingertip-based PPG data,
processes it locally to extract time-domain features, and prepares it for wireless transmission.
The embedded software processes the raw signal in real time and extracts several well-
established HRV metrics, including HR, R wave to R wave intervals (RR intervals), standard
deviation of normal-to-normal intervals (SDNN), and RMSSD. A detailed description of
Zhurek’s hardware and firmware architecture is provided in Section 3.2.

Processed HRV features are encapsulated in JavaScript Object Notation (JSON) format
and transmitted via Wi-Fi using the MQTT protocol. The device publishes data to the
topic zhurek/ppg/hrv, which is managed by a Mosquitto 2.0 MQTT broker hosted on a
centralized server. All communication is secured using TLS 1.3 with mutual certificate-
based authentication to ensure data integrity and privacy.

At the storage layer, incoming MQTT messages are parsed and stored in a relational
SQL database. Each record is timestamped using a synchronized internal real-time clock,
which is regularly updated via Network Time Protocol (NTP) to maintain temporal accuracy
across devices. In parallel, the wearable device retains a local backup log in CSV format,
providing redundancy in case of connectivity loss.
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At the analytics and classification domain, the extracted HRV features are utilized
to predict the risk of autonomic dysfunction associated with IHD. The stored data is
periodically processed using various ML algorithms, including gradient boosting methods
(XGBoost, CatBoost), RF, interpretable generalized additive models (EBMs), and hybrid
architectures combining deep neural networks (DNNs) with least-mean-square support
vector machines (LMSVMs). These models are trained on labeled datasets to classify
patients by risk level and to detect early patterns of dysfunction. This approach enables
automated preliminary diagnostics and supports wellness assessment and risk stratification
in remote monitoring scenarios.

This system enables continuous monitoring and structured data analysis by integrating
embedded signal processing, secure wireless transmission, and modular analytics. The use
of open-source tools and commercially available components supports reproducibility and
facilitates deployment in remote monitoring scenarios.

3.2. Zhurek IoT Device

Zhurek, shown in Figure 2, is a custom-engineered, non-invasive wearable device
designed to capture and process PPG signals in real time. Its compact form factor, self-
contained electronics, and on-device analytics make it suitable for long-term ambulatory
monitoring outside clinical environments.

 
(a) (b) 

Figure 2. Zhurek IoT device: (a) The device in use, with a finger placed in the measurement slot.
(b) The 3D-printed casing with the fingertip slot and optical PPG sensor exposed.

The Zhurek device integrates MAX30102 optical sensor (DFRobot Gravity: SEN0344,
DFRobot, Shanghai, China) with a Raspberry Pi Zero 2 W microcontroller (ARM Cortex-
A53, 1 GHz, 512 MB RAM, Raspberry Pi Ltd., Cambridge, UK) running Raspberry Pi OS
Lite (64-bit, Version 6.12, Raspberry Pi Foundation, Cambridge, UK). Only the infrared
channel is used for signal acquisition, sampled at 100 Hz over a hardware I2C bus (address
0 × 57). The sensor is enclosed in a 3D-printed PLA shell with an IR-shielded finger clip
and soft elastomer padding to reduce motion artefacts and ambient interference.

The device is designed as a finger-clip wearable, intended primarily for resting-state
measurements. Power can be supplied either by a rechargeable Li-Po battery (~6 h in wire-
less mode) or continuously through a USB power adapter, depending on the application.
In terms of reliability, the system maintains >95% valid beat detection under resting condi-
tions. Accuracy was benchmarked against a clinical-grade Holter ECG, with deviations of
−0.601 bpm for HR, +33.1 ms for SDNN, and −4.8 ms for RMSSD, demonstrating clinically
acceptable agreement.

All acquisition and processing code is implemented in Python 3.11, with smbus2 used
for I2C communication. The raw PPG signal undergoes baseline correction and smoothing
(via moving average filtering). A derivative-based peak detection algorithm derived from
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HeartPy identifies cardiac cycles, with physiological validation applied to exclude outliers.
RR intervals are calculated from peak timestamps, and time-domain HRV metrics—HR,
SDNN, and RMSSD—are computed in 30 s windows with a 5 s step. Frequency-domain
metrics (LF, HF, LF/HF) and Max_HR are obtained offline together with the anthropometric
features of BMI and age, forming an eight-item feature vector.

Each result is serialized as JSON object and published via MQTT. In addition to live
data transmission, the device logs the results locally in CSV format as a fallback mechanism.
All data points are timestamped using a real-time clock (RTC) synchronized periodically
via NTP.

Zhurek delivers optimal signal quality and high physiological accuracy under resting
conditions. Resting monitoring reduces motion artefacts and yields stable autonomic
patterns, ensuring reliable HRV computation. Validation results align with published
evidence showing that resting acquisition provides the greatest accuracy and reproducibility
for HRV, gas exchange, and metabolic rate measurements [43–45]. Remote HR and HRV
recorded in this state correlate closely with ECG readings, and baseline metabolic rate
together with respiratory exchange ratio remains stable and accurate during steady rest [45].
Physiological data collected under these conditions faithfully reflect ANS activity and serve
as a robust baseline for IHD risk surveillance.

The clinical utility and predictive value of numerous HRV parameters are well es-
tablished in the existing literature. Prior research [45], primarily using the gold-standard
ECG, has confirmed that metrics such as SDNN, RMSSD, and the triangular index are
significantly associated with patient outcomes. The primary challenge, however, lies in
translating this diagnostic power from clinical-grade ECGs to convenient, non-invasive
wearable devices.

To assess the suitability of the Zhurek device for HRV analysis, a validation study was
conducted by comparing its readings against a reference clinical-grade three-lead Holter
monitor. The devices demonstrated a high degree of concordance, with the signal trends
from Zhurek closely tracking the Holter ECG, as shown in Figures 3 and 4.

Figure 3. Time-series comparison of HR between the Zhurek device and the Holter monitor.
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Figure 4. Time-series comparison of RR intervals between the Zhurek device and the Holter monitor.

The data reveals a strong temporal correlation, confirming that the Zhurek device
accurately captures the dynamic fluctuations of cardiac rhythm. A minor, stable offset in
the absolute values was observed, which characterizes the inherent difference between the
PPG and ECG measurement techniques. Given that the primary goal of HRV analysis is
to assess the variability in rhythm rather than absolute values, this high degree of trend
alignment validates the Zhurek device as a reliable tool for its intended application.

These findings are consistent with a growing body of research focused on validating
PPG-based sensors. Authors of a study [46] also validated a wearable device, demonstrating
that its HRV readings closely align with reference ECG data and can serve as a valid
substitute for longer, standard measurements. Further reinforcing this, another study [47]
found that the accuracy of certain PPG-derived HRV parameters could be adequate for
patient monitoring, underscoring the importance of parameter-specific evaluation.

3.3. Study Population and Data Collection

To ensure the robust training and evaluation of ML models for IHD prediction, HRV
data were collected from two independent cohorts: a clinical group of patients with
confirmed CVDs (300 patients) and a healthy control group. This dual-cohort design
allows the models to learn patterns of autonomic dysfunction observed in real-world
pathological states while distinguishing them from the normal physiological variability
found in healthy individuals.

Monitoring of both cohorts was conducted using high-quality RR-interval acquisi-
tion devices to ensure the consistency and reliability of HRV measurements. Recordings
from participants diagnosed with IHD and from healthy volunteers were collected under
controlled laboratory conditions using a BTL-08 Holter ECG system (BTL Industries, Steve-
nage, Hertfordshire, UK) and the Zhurek IoT device (Almaty, Kazakhstan). The BTL-08
is a multi-lead ambulatory ECG recorder with up to 12-lead configuration, continuous
monitoring for 24–48 h, and a sampling frequency of 1000 Hz at 12-bit resolution. It is
CE-certified for diagnostic use and has validated performance in arrhythmia and ischemia
detection, making it a widely adopted gold-standard reference for HRV research.

HRV data of adult inpatients with confirmed cardiovascular conditions were acquired
at the Research Institute of Cardiology and Internal Diseases (Almaty, Kazakhstan). Di-
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agnoses were established according to clinical protocols under the supervision of the
institute’s cardiology department. Continuous recordings were collected using the BTL-08
Holter ECG monitors and the Zhurek device.

Participants represented both early and advanced stages of cardiovascular pathology.
This broad distribution increases population heterogeneity and supports the development
of generalizable ML models. All recordings were stored as high-resolution numerical RR-
interval files, and the resulting dataset already includes the key HRV variables—HR, RR in-
tervals, SDNN, and RMSSD—automatically computed and ready for downstream analysis.

To establish a physiological baseline for HRV under normal autonomic conditions,
data were collected from healthy volunteers. All participants reported no history of
cardiovascular, neurological, or metabolic disorders. To minimize confounding factors,
participants were instructed to abstain from alcohol, tobacco, caffeine, and intense physical
activity for at least 24 h prior to data collection, and to maintain regular sleep (7–8 h) the
night before. Participants were excluded if they had an acute illness, failed to meet the
preparation criteria, or if signal recordings showed excessive artifacts.

Descriptive statistics and categorical characteristics of the healthy control group are
summarized in Tables 1 and 2.

Table 1. Descriptive statistics of participant characteristics.

Characteristics Mean ± Standard Deviation

Height (cm) 173.8 ± 10.41
Weight (kg) 71.8 ± 18.65

BMI 23.65 ± 7.94

Table 2. Categorical characteristics distribution of participants.

Characteristics Categories

Gender Female: 9, Male: 11
Genetic marker None
Harmful Habits Yes: 4, No: 16

3.4. Data Preprocessing

In this pilot study, data preprocessing involved the integration of two distinct cohorts:
a healthy control group and a group of patients diagnosed with IHD. Large Language
Models (LLMs) were used to process the raw patient data, enabling the transformation
and structuring of the initial information to extract the necessary parameters for analysis.
The dataset includes important HRV features such as SDNN, percentage of successive
normal-to-normal intervals that differ by more than 50 milliseconds (pNN50), and RMSSD,
along with frequency-domain measures including LF, HF, and the LF/HF ratio. To balance
the dataset and improve model robustness, data from healthy participants were augmented
using a conditional tabular generative adversarial network (CTGAN), increasing the healthy
group records from 20 to 200. As a result, the total dataset consisted of 500 observations.

CTGAN is a generative model specifically designed to synthesize realistic tabular
data, including both continuous and categorical features, by conditioning the generation
process on selected discrete values. The model utilizes a conditional generator to resample
imbalanced columns and employs mode-specific normalization to better model multi-
modal distributions. The objective function of CTGAN follows the standard GAN minimax
formulation, conditioned on discrete variables:

minmaxDV(D,G) = Ex~Pdata[logD(x|c)] + Ez~Pz[log(1 − D(G(z|c)))] (1)
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where G is the generator; D is the discriminator; c is the conditional vector (discrete feature);
and z is the noise input [48].

CTGAN has repeatedly demonstrated its effectiveness as a data augmentation method.
In a recent medical-data study, CTGAN presented a better performance (AUC, F1-score,
precision, etc.) than ROS, SMOTE, and ADASYN, outperforming 17 baseline models [31].
It has been used to generate samples of the minority class, significantly improving the
performance of various ML models [49]. Experimental results showed that the use of
CTGAN led to substantial improvements in classification quality based on precision, recall,
and F1-score metrics compared to traditional data augmentation methods. This makes
the model an optimal choice for enhancing reliability in situations with limited original
data [14].

Prior to model training, the data were preprocessed by removing all rows with missing
values. This approach eliminates incomplete records, reducing the risk of bias caused
by inaccurate or partial information. Removing rows with missing data ensures more
reliable model training, as only complete and valid observations are retained—an especially
important consideration in the context of medical data analysis.

To assess the outcome of class balancing, a class distribution plot was created after
applying CTGAN, showing the number of records classified as having IHD and those
without it (No IHD). Figure 5 demonstrated improved class balance, which contributed to
enhanced performance and generalizability of the ML models.

Figure 5. Distribution of IHD.

3.5. Feature Analysis and Selection

For the analysis of cardiological data, several ML models were utilized, including
RF, a DNN-LMSVM, XGBoost, CatBoost, and EBMs. These models were selected based
on their proven effectiveness in handling complex, non-linear relationships in biomedical
data, as well as their capability to process structured and high-dimensional features. DNNs
uncover hidden interactions and complex dynamics in systems purely from observational
data, allowing analysis without relying on predefined models [50]. XGBoost and RF utilize
ensemble learning to enhance the accuracy and reliability of assessment [15]. Moreover,
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EBMs are applied to create interpretable models through generalized additive modeling,
facilitating the understanding of feature contributions.

The classification task was formulated as a multi-class problem aimed at categorizing
patients into different cardiovascular risk groups based on clinical and physiological features.

To ensure optimal hyperparameter settings and model robustness, grid search com-
bined with cross-validation (CV = 5) was performed. This approach systematically explores
various hyperparameter combinations and evaluates model generalizability across different
data splits, reducing overfitting and improving predictive accuracy.

The DNN-LMSVM model leverages deep hierarchical feature extraction combined
with the robust margin maximization of LMSVMs to capture subtle patterns in the data.
Ensemble methods such as RF, XGBoost, and CatBoost were incorporated to improve
predictive performance and reduce overfitting by aggregating multiple decision trees.
Additionally, EBMs were applied to build interpretable models with the ability to analyze
feature contributions through generalized additive modeling. To enhance interpretability,
SHapley Additive exPlanations (SHAP) values were computed for tree-based models,
allowing quantitative assessment of feature impact on individual predictions.

Data preprocessing included encoding categorical variables to ensure compatibility
across all models. Target labels representing cardiovascular risk categories were encoded
into numerical classes to facilitate supervised learning. The dataset comprised numerous
clinical indicators and physiological measurements relevant to cardiovascular health.

Model development and training were conducted in Python using libraries including
Scikit-learn (for RF and EBMs), XGBoost, CatBoost, and PyTorch (for DNN-LMSVM). The
performance of the models was assessed using four primary evaluation metrics. Accuracy
quantifies the overall proportion of correct predictions made by the model. Precision
measures the proportion of true positive instances among all instances predicted as positive.
Recall evaluates the model’s ability to identify all actual positive cases within the dataset.
The F1-score, as the harmonic mean of precision and recall, provides a balanced measure
that captures both the model’s precision and sensitivity, thereby enabling a comprehensive
assessment of its reliability and predictive effectiveness.

4. Results
4.1. Participant Characteristics and HRV Data Collection

Descriptive statistics of key HRV metrics for both the healthy control group and IHD
group are summarized in Table 3, respectively. The analyzed features include the time-
domain measures SDNN, PNN50, and RMSSD, along with the frequency-domain measures
LF, HF, and the LF/HF ratio. These values provide an overview of the ANS activity in
both populations and highlight potential differences in HRV patterns between healthy
individuals and those with IHD [51].

Table 3. Summary of HRV metrics in IHD and healthy control group.

HRV Features Mean ± Standard Deviation of IHD Group Mean ± Standard Deviation of Healthy Group

SDNN 64.55 ± 26.43 61.25 ± 23.14
PNN50 4.82 ± 5.37 30.55 ± 21.13
RMSSD 25.22 ± 12.92 61.44 ± 33.06

LF 0.16 ± 0.08 0.03 ± 0.03
HF 0.16 ± 0.08 0.03 ± 0.03

LF/HF 1.06 ± 0.33 0.96 ± 0.43

As shown in Figure 6, the mutual information (MI) analysis was performed to evaluate
the statistical dependency between HRV features and the presence of IHD. Among the
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analyzed features, the frequency domain metrics LF and HF components demonstrated
the highest MI scores of 0.34 and 0.31, respectively, indicating a stronger association with
IHD status. The PNN50 ratio showed a moderate MI value of 0.19, suggesting it carries
some dependency with the target but less than its individual components. In contrast, time
domain features such as SDNN (0.06), RMSSD (0.059), and LF/HF (0.093) exhibited lower
MI values, reflecting weaker dependency.

Figure 6. Mutual information scores between HRV features and IHD.

4.2. Data Augmentation and Comparison

To overcome the limited sample size of the healthy control group, the CTGAN model
was employed to generate synthetic HRV data. The original dataset, comprising 50 healthy
individuals, was expanded to 250 samples using this generative approach. The CTGAN
model was trained for 2000 epochs to ensure adequate learning of the underlying data
distribution. This augmentation allowed for more balanced model training. It is important
to note that the generated data were used only for training the model, while exclusively
real data were used for testing. As shown in Figure 7, the generated data closely follow the
original distributions, indicating that the synthetic data successfully captures the general
structure and range of the original measurements. Most features, such as SDNN, RMSSD,
and LF, show strong alignment between the two datasets. However, slight differences
are noticeable in features like PNN50 and LF/HF, where the generated data appear more
peaked or slightly shifted. It is important to note that synthetic data is not expected to
replicate the original dataset with complete precision. In fact, introducing some degree
of dissimilarity is both acceptable and desirable, particularly in the context of health data
where protecting patient privacy and preventing identity disclosure are critical [16]. Despite
minor variations, it is essential that the synthetic dataset preserves the core statistical
properties and inter-feature dependencies of the real data. In this case, the synthetic HRV
metrics retained the necessary structure and distribution to support meaningful clinical
insights and reliable model development.

Table 4 presents a comparison between the original and synthetic datasets based on
key physiological features. For each feature, mean values, variances, and p-values from the
Student’s t-test are provided to assess whether there are significant differences between the
two datasets.
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Figure 7. Distribution of key HRV metrics (SDNN, RMSSD, PNN50, LF, HF, LF/HF) in original vs.
synthetic data.

Table 4. Comparison of statistical properties between original and synthetic datasets for physiological
features.

Feature Original Mean Synthetic
Mean

Mean
Difference

Original
Variance

Synthetic
Variance

Variance
Difference p-Value

SDNN 61.2493 54.7188 6.530506 535.3021 435.9258 99.37634 0.052138
PNN50 30.5490 28.6446 1.904339 446.304 460.7659 −14.4619 0.572923
RMSSD 61.4390 47.7181 13.7209 1092.974 785.4974 307.477 0.002798

LF 0.032 0.0363 −0.00423 0.000829 0.00086 −3.1 × 10−5 0.359098
HF 0.034 0.0299 0.004487 0.00083 0.000693 0.000137 0.287626

LF/HF 0.9572 1.0007 −0.04346 0.189792 0.183772 0.00602 0.521613
Max_HR 93.6760 91.8285 −1.8475 158.1155 89.1708 −68.9448 0.5295

BMI 23.6450 22.8590 −0.7860 32.4784 33.0017 0.5233 0.2892

For most features (SDNN, PNN50, LF, HF, LF/HF), the p-values are above 0.05,
indicating no statistically significant differences between the original and synthetic data.
However, for the RMSSD feature, the p-value is 0.002798, which indicates a statistically
significant difference in the distributions of this metric.

Thus, the synthetic dataset preserves the key statistical properties of most of the
original features. It can be used for further research; however, the statistically significant
difference in the RMSSD metric should be taken into account, as it may affect analyses
related to this specific feature.

4.3. Machine Learning Model Classification Performance

To enhance class balance and improve the robustness of model training, the syn-
thetic data samples generated via CTGAN were merged with the original dataset. This
augmented dataset was used to train a set of five ML classifiers: RF, CatBoost, XGBoost,
DNN-LMSVMs, and Explainable Boosting Machine (EBM). The aim of this classification
task was to use HRV features to determine whether IHD is present (1) or absent (0). Follow-
ing model training, performance evaluation was carried out using 5-fold cross-validation.
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As illustrated in Table 5, four standard evaluation metrics were used to assess classification
quality: accuracy, F1-score, precision, and recall. All models demonstrated solid perfor-
mance in distinguishing between individuals with and without IHD. Among the tested
classifiers, the RF was the best-performing model, achieving an accuracy of 90.82%, with
a corresponding precision of 92.11%, recall of 91.00%, and an F1-score of 90.11%. The
CatBoost, XGBoost, and EBM models showed similar results with an accuracy of 88.78%.
The DNN-LMSVM classifier achieved an accuracy of 84.69%.

Table 5. Accuracy, precision, recall, and F1-score values obtained for ML classifiers in the prediction
of IHD based on HRV metrics.

Evaluation Metrics RF CatBoost XGboost DNN-LMSVM EBM

Accuracy 90.82% 88.78% 88.78% 84.69% 88.78%
Precision 92.11% 90.01% 90.68% 86.00% 88.78%

Recall 91.00% 88.95% 89.00% 84.31% 88.78%
F1-Score 90.11% 87.91% 87.64% 85.15% 87.91%

The confusion matrix for the model is presented in Figure 8, illustrating the distribution
of true positives, true negatives, false positives, and false negatives for the binary prediction
task. Out of 48 actual class 0 instances, all 48 were correctly classified as class 0 (true
negatives), with zero false positives. For class 1, the model correctly predicted 41 out of
50 instances (true positives), with 9 instances misclassified as class 0 (false negatives).

Figure 8. Confusion matrix of random forest for IHD classification.

The evaluation metrics shown in the ROC and precision–recall curves, as indicated in
Figure 9, demonstrate strong overall model performance. The ROC curve shows a high true
positive rate across most thresholds, with an AUC of 0.98, reflecting excellent discriminative
ability between the two classes. Using Youden’s index [52], the optimal decision threshold
for IHD risk prediction was identified as 0.422. At this cutoff, the model achieved a sensitiv-
ity of 88% and a specificity of 100%. This threshold can be used to stratify individuals into
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“high-risk” (probability > 0.422) and “low-risk” (probability ≤ 0.422) groups, providing
clinically interpretable guidance for screening and early intervention. The precision–recall
curve demonstrates near-perfect performance, with precision remaining at 1.0 across the
majority of recall values before only slightly declining at very high recall levels. This indi-
cates the model is highly effective at minimizing false positives while still achieving strong
sensitivity. These results indicate a high level of overall accuracy, with strong sensitivity
and specificity.

(a) (b) 

Figure 9. Model evaluation metrics: (a) ROC curve demonstrating the trade-off between true positive
and false positive rates; (b) precision–recall curve illustrating the balance between precision and
recall across thresholds.

Figure 10 presents the decision boundaries and feature separability of the classification
model using PCA and t-SNE projections, respectively.

(a) (b) 

Figure 10. Feature space visualization: (a) PCA projection showing the model’s decision boundary
and class distribution; (b) t-SNE projection illustrating the separability of classes based on learned
feature representations.

In the PCA-based visualization, the background shading indicates the regions where
the model predicts each class, while the data points are plotted according to their true
labels (red for class 0, blue for class 1). In the t-SNE plot, data instances are projected into
a non-linear two-dimensional space to better visualize the data structure learned by the
RF model.
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Both visualizations show that classes 0 and 1 generally form distinct clusters; however,
there is a significant overlap between them. This overlap corresponds to the regions where
the model faces higher uncertainty in classification, which is consistent with the results
obtained from the confusion matrix.

The histogram of decision scores shown in Figure 11 illustrates the model’s ability
to distinguish between the negative and positive classes based on predicted probabilities.
The distribution for the negative class (in red) is sharply concentrated near zero, while
the distribution for the positive class (in green) is primarily distributed between 0.7 and
0.9. This clear separation between the two distributions indicates strong class discrimina-
tion, despite a small overlap. Such a distribution suggests the model produces confident
predictions and maintains high reliability in distinguishing between the two classes.

Figure 11. Histogram of decision scores: class-wise distribution of decision scores for model predictions.

To evaluate the influence of individual HRV features on IHD prediction, SHAP was
applied to the trained classification model. The SHAP summary plot in Figure 12 presents
the mean absolute SHAP values, highlighting the relative contribution of each feature to
the model’s output. HF exhibited the highest SHAP value, making it the most influential
feature in the prediction task. LF ranked second in importance. They were followed,
in descending order of contribution, by PNN50, SDNN, and RMSSD. The LF/HF ratio
was found to have the lowest SHAP value, indicating the least impact on the model’s
decision-making process.

Figure 13 presents the SHAP dependence plots for six HRV features. They show
how the value of each feature (X-axis) influences the model’s prediction (Y-axis), with the
color of the points reflecting the level of another important feature—HF (high-frequency
power), which is an indicator of parasympathetic activity. Analysis of the plots reveals
complex interactions, showing that the influence of nearly every metric on the prediction
is highly dependent on the background parasympathetic activity. For instance, the plots
for LF and LF/HF show that low HF levels (blue dots) are associated with negative SHAP
values, which increases the likelihood of an IHD prediction. This suggests that the model
considers an imbalance towards the sympathetic system as a risk factor, especially with
weak parasympathetic activity. Conversely, for SDNN, PNN50, and RMSSD, an opposite
interaction trend is observed: high HF levels (pink and red dots) are linked to higher
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(more positive) SHAP values, which decreases the likelihood of an IHD prediction. This
indicates that the model considers these metrics as signs of health, particularly when they
are supported by strong overall parasympathetic activity. These interactions demonstrate
that the model has learned to evaluate not just individual values, but their combinations
and the overall autonomic balance, making the prediction more accurate.

Figure 12. Feature importance analysis using SHAP.

Figure 13. SHAP dependence plots for HRV features colored by HF values.

5. Discussion
A central innovation of this study is the development and rigorous clinical validation

of the Zhurek IoT device, a custom-engineered, non-invasive tool designed to overcome
the practical limitations of conventional cardiovascular monitoring. While the 24 h Holter
ECG is the gold standard [53] for HRV analysis, its application is often restricted by high
costs [54], user inconvenience [55], and the need for clinical supervision. The Zhurek device
was specifically engineered to bridge this gap, offering a low-cost, ambulatory solution
that captures high-fidelity PPG signals and performs real-time, on-device processing of
critical HRV metrics. Thus, a primary objective was to evaluate the device’s performance
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and reliability under real-world conditions, establishing its viability as an accessible tool
for scalable screening. To empirically prove its clinical utility, the Zhurek device was bench-
marked directly against a gold-standard three-lead Holter ECG monitor in a supervised
clinical setting. Concurrent HRV data were collected from both patients diagnosed with
IHD and healthy controls, enabling a direct, head-to-head comparison. The results demon-
strated a high degree of concordance, with signal trends from the Zhurek device closely
tracking those recorded by the Holter ECG. This strong temporal correlation confirms that
our device accurately captures the dynamic fluctuations in cardiac rhythm essential for
meaningful HRV analysis.

The ML classification results further demonstrate that a custom, low-cost PPG system
can classify IHD with high performance (AUC = 0.98) and strong signal fidelity. Specifically,
it achieved a low absolute deviation of −4.8 ms for RMSSD and +33.1 ms for SDNN against
a Holter ECG. This performance is particularly noteworthy when compared to prior vali-
dations, such as the 24 h wrist-recording study in [47], which reported significant relative
mean absolute errors for high-frequency measures like RMSSD (≈17%) and the LF/HF
ratio (≈36%). Our system’s minimal deviation for RMSSD suggests a robust capability in
capturing sensitive beat-to-beat variations, a known challenge for PPG technology.

Furthermore, while other foundational studies have focused on the technical nuances
of signal fidelity—such as achieving a low RR-series error standard deviation (≈5.4 ms) with
smartphone PPGs [56] or highlighting the necessity of up-sampling to 200 Hz to improve
RMSSD agreement [46]—their primary objective remained signal-level validation. Our
research builds upon these findings by applying the derived HRV metrics to a downstream
clinical classification task. Consequently, our approach is distinct in its combination of
a custom, low-cost hardware platform, validated high performance for sensitive HRV
metrics, and its successful deployment in a ML model for the specific clinical purpose of
IHD risk stratification.

This successful validation shows that an affordable, user-friendly PPG sensor can
reliably detect the physiological differences between IHD and healthy states, establish-
ing the Zhurek device as a foundational technology for future remote and cost-effective
screening systems.

The mutual information analysis revealed that frequency-domain features, particularly
LF and HF, were more strongly associated with IHD. To overcome the imbalance in class
distribution, particularly due to the small number of healthy control participants, we em-
ployed CTGAN to generate synthetic HRV data. While synthetic data cannot fully replicate
the complexity of physiological signals, it can approximate their statistical structure and
support more balanced learning during model development.

We compared the results of CTGAN-ENN with the conventional hybrid techniques
SMOTE-ENN and ADASYN-ENN, and CTGAN-ENN consistently delivered superior
AUC, F1-score, and G-mean across six customer-churn datasets [57]. Our experiments
further indicated that classical generative algorithms like SMOTE and ADASYN only
worked well in a single dataset, whereas CTGAN-based methods remained robust across
all scenarios [57].

Moreover, the use of synthetic samples provides a practical solution to privacy con-
cerns, reducing the risk of re-identification in health datasets, thereby supporting ethical
data sharing practices. Additionally, it facilitates broader access to healthcare datasets,
enabling researchers to conduct timely investigations even when access to real clinical
data is restricted. Synthetic datasets also serve as a valuable resource for developing and
testing software solutions, especially in scenarios where realistic data are unavailable or
insufficient. Despite these benefits, synthetic data must be applied with careful consider-
ation of its limitations. Its fidelity depends heavily on the underlying generative model
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and the quality of the original data used for training. Not all synthetic samples fully
replicate the distributions or dependencies present in real datasets, which may introduce
biases or affect downstream model performance. Moreover, there remains a recognized
risk of data leakage if synthetic generation is not properly managed, and overreliance on
imputation models may obscure true physiological variability [16–18]. In this study, slight
discrepancies were observed in features such as PNN50 and LF/HF, underscoring the need
for cautious interpretation.

In probability and information theory, mutual information measures how much two
random variables depend on each other. It specifically quantifies how much information
is gained about one variable by knowing the value of the other [20]. Applied to our
dataset, this analysis demonstrated that frequency-domain HRV features (LF and HF)
exhibit the strongest dependency on the target variable, suggesting they carry the most
relevant physiological signals associated with autonomic imbalance in IHD. Evaluation
metrics, including the ROC and precision–recall curves, confirmed the reliability of the
classifiers. The high area under the ROC curve (AUC = 0.98) reflects strong sensitivity and
specificity, while the histogram of decision scores provides a visual representation of the
model’s discriminative ability. The negative class distribution is highly skewed, with a
strong peak near a decision score of 0.0, indicating that the model confidently assigns low
scores to the majority of samples from this class. Conversely, the positive class distribution
is broader, with a noticeable concentration of scores in the high range (0.8–0.9), reflecting
the model’s ability to identify a large subset of positive samples with high confidence.
However, the histogram also reveals a region of overlap between the two class distributions.
This overlap indicates that for a portion of the samples, the model’s predictive certainty is
diminished, as both negative and positive class data points occupy this same range. This
observation underscores the importance of considering the decision score itself, beyond a
simple binary classification, especially for clinical decision support where borderline cases
may require further scrutiny. Visualizations using PCA and t-SNE further illustrate the
separability between classes. Although some overlap exists—as is typical in biological
data—the overall clustering supports the discriminative power of HRV features. These
projections also help to interpret the feature space learned by the model and highlight
regions of higher classification uncertainty.

The SHAP analysis revealed that frequency domain features, particularly HF and
LF, play a central role in distinguishing between IHD and non-IHD cases. These findings
are consistent with physiological evidence linking reduced autonomic function, especially
diminished parasympathetic activity, with cardiovascular risk [21,34,36]. The prominence
of HF suggests a strong connection between vagal tone and IHD prediction.

Several limitations should be acknowledged in this pilot study. One of the key ob-
jectives was to evaluate the performance and reliability of the Zhurek IoT device, which
utilizes PPG technology to collect data in real-world, ambulatory conditions. For data
verification, we conducted parallel data collection using standard three-lead Holter ECG
monitors. While the Holter ECG is a device that records the heart’s electrical activity,
allowing for the detection of rhythm disturbances, ischemia, and other issues, PPG, in turn,
measures volumetric blood pulsation in peripheral vessels.

This methodological difference determines their respective strengths and weaknesses.
Comparative studies confirm that ECG often outperforms other methods in terms of signal
quality and respiratory signal extraction [58]. However, ECG is susceptible to interference
and motion artifacts arising from unstable skin contact [59]. PPG, as an optical technique,
measures volumetric changes in blood flow within the microvascular bed. Since PPG
captures hemodynamic changes indirectly, factors such as poor peripheral perfusion or
incorrect sensor placement (for instance, on the wrist, as with the Zhurek device) can
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significantly degrade signal quality and reduce diagnostic specificity [26]. Despite this,
modern research indicates that with the use of advanced signal processing algorithms,
PPG-based devices can achieve performance comparable to ECG in tasks such as AF
detection [60]. Our work supports this thesis, demonstrating high accuracy (AUC = 0.95)
in classifying IHD based on HRV metrics obtained from PPG.

Another significant limitation of this pilot study is the small number of participants,
which is particularly noticeable in the healthy control group. A small sample size can
reduce the statistical power and the model’s generalization ability, potentially distorting
the interpretation of intergroup differences. To address the class imbalance problem, we
employed a generative adversarial network, CTGAN, to create synthetic data. While
synthetic data cannot fully replicate the complexity of physiological signals, it successfully
approximates their statistical structure, which allowed for more balanced model training.
Nevertheless, to definitively confirm the obtained results and enhance their reliability, we
plan to conduct a larger-scale study with a significantly increased number of participants
in both groups.

Furthermore, a critical limitation of this study is that all data were collected from
participants exclusively in a resting state. While this controlled approach allowed us to
establish a baseline performance and validate the device against the gold-standard Holter
under ideal conditions, it does not account for the impact of motion artifacts. PPG signals
are notoriously susceptible to corruption from physical activities such as walking or even
minor hand movements. The current study did not evaluate the device’s stability or anti-
interference capabilities in dynamic, real-world scenarios. Therefore, while our results
are promising for resting-state applications, the device’s utility for continuous monitoring
during daily life remains to be validated.

Finally, the generalizability of our findings may be limited as the model was trained
and validated exclusively on a single-center sample from Kazakhstan. This specific demo-
graphic and geographic context means that the model’s performance on other ethnic or
regional populations is unknown. It is not possible to rule out potential biases stemming
from unique genetic, lifestyle, or environmental factors characteristic of the study popula-
tion. Therefore, external validation on diverse, multi-center datasets is a necessary next
step to confirm the robustness and broader applicability of our model.

6. Conclusions
The pilot study showed that PPG recordings obtained with the “Zhurek” device

reproduce HRV metrics with clinically acceptable accuracy. In comparative tests, the
deviation from the three-lead Holter monitor was −0.601 bpm for mean HR, +33.1 ms for
SDNN, and −4.8 ms for RMSSD. HRV data were obtained from the Research Institute of
Cardiology and Internal Medicine; they were recorded using ECG Holter and the custom
Zhurek IoT device. The ML models trained on HRV features showed promising results in
classifying individuals with and without IHD. Among them, the RF model achieved the
highest accuracy of 90.82%, demonstrating strong performance across precision (92.11%),
recall (91.00%), and F1-score (90.11%) metrics. Testing conducted exclusively on real data
confirmed the model’s high efficacy: at the optimal cutoff threshold, the sensitivity was 88%,
and the specificity was 100%. The use of CTGAN for synthetic data generation addressed
the class imbalance issue by expanding the healthy control group from 50 to 250 samples,
contributing to improved model generalizability and robustness. Analysis of the model’s
internal logic using the SHAP method showed that the contribution of each HRV feature to
the prediction of IHD is modulated by changes in parasympathetic activity, as reflected
in the high-frequency (HF) component. It was established that in cases of sympathovagal
imbalance and low vagal tone (low HF values), metrics such as LF/HF, LF, and RMSSD
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were the primary contributors to an increased risk of IHD. Conversely, in the presence of
strong parasympathetic modulation (high HF values), features like SDNN, PNN50, and
RMSSD played a protective role in the prediction. These results underscore that the model
identified non-linear, multivariate dependencies, and that the predictive value of HRV
markers is context-dependent and dynamically influenced by autonomic balance.

These findings confirm that the IoT device Zhurek is a viable and affordable platform
for ambulatory HRV monitoring, and that the intelligent models developed using its data
can be effectively applied to the early risk detection of IHD.

Our future work will focus on evolving the Zhurek IoT device from a validated proto-
type into a scalable, intelligent platform for proactive cardiovascular health management.
Addressing the limitations of the current pilot study is our immediate priority.

First, and most critically, we will move our analysis from a controlled resting state to
dynamic, real-world conditions. Future research will be aimed at conducting experiments
to assess the device’s noise immunity during various activities, such as walking and
jogging. Concurrently, we will focus on developing and implementing advanced algorithms
to suppress the motion artifacts inherent in PPG signals, which is essential for reliable
ambulatory monitoring.

To further enhance the robustness and generalizability of our models, we will markedly
increase the sample size, particularly in the healthy volunteer cohort, to improve statis-
tical power. Critically, we plan to conduct external validation using multi-center and
multi-ethnic datasets to ensure our model performs well across diverse populations
and is free from the geographic or genetic biases identified in this study. We will also
broaden the feature set by incorporating non-linear, geometric, and segment-based HRV
indices, along with relevant clinical covariates, to create a more comprehensive picture of
cardiovascular health.

The ultimate goal is to integrate the validated device with interpretable ML models.
This will enable continuous ambulatory heart monitoring, provide early alerts for at-risk
groups, and facilitate personalized treatment strategies. Collectively, these steps will help
lessen the burden of CVDs through early intervention and proactive health management.
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CatBoost Categorical Boosting Algorithm
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