Utilize este identificador para referenciar este registo:
http://hdl.handle.net/10071/35606Registo completo
| Campo DC | Valor | Idioma |
|---|---|---|
| dc.contributor.author | Mascarenhas, M. | - |
| dc.contributor.author | Mota, J. | - |
| dc.contributor.author | Cordeiro, J. R. | - |
| dc.contributor.author | Mendes, F. | - |
| dc.contributor.author | Martins, M. | - |
| dc.contributor.author | Cardoso, P. | - |
| dc.contributor.author | Almeida, M. J. | - |
| dc.contributor.author | Pinto da Costa, A. | - |
| dc.contributor.author | Hajra Martinez, I. | - |
| dc.contributor.author | Matallana Royo, V. | - |
| dc.contributor.author | Niland, B. | - |
| dc.contributor.author | Di Palma, J. | - |
| dc.contributor.author | Ferreira, J. | - |
| dc.contributor.author | Macedo, G. | - |
| dc.contributor.author | Santander, C. | - |
| dc.date.accessioned | 2025-11-21T10:44:55Z | - |
| dc.date.available | 2025-11-21T10:44:55Z | - |
| dc.date.issued | 2025 | - |
| dc.identifier.citation | Mascarenhas, M., Mota, J., Cordeiro, J. R., Mendes, F., Martins, M., Cardoso, P., Almeida, M. J., Pinto da Costa, A., Hajra Martinez, I., Matallana Royo, V., Niland, B., Di Palma, J., Ferreira, J., Macedo, G., & Santander, C. (2025). Artificial intelligence driven diagnosis of motility patterns in high-resolution esophageal manometry: A multicentric multidevice study. Clinical and Translational Gastroenterology. https://doi.org/10.14309/ctg.0000000000000941 | - |
| dc.identifier.issn | 2155-384X | - |
| dc.identifier.uri | http://hdl.handle.net/10071/35606 | - |
| dc.description.abstract | INTRODUCTION: Esophageal motility disorders (EMDs) are common in clinical practice, with a high symptomatic burden and significant impact on the patients' quality of life. High-resolution esophageal manometry (HREM) is the gold standard for the evaluation of functional esophageal disorders. The Chicago Classification offers a standardized approach to HREM. However, HREM remains a complex procedure, both in data analysis and in accessibility. This study aimed to develop and validate machine learning (ML) models to detect EMDs according to the Chicago Classification. METHODS: We retrospectively analyzed 618 HREM examinations from 3 centers (Spain and the United States) using 2 recording systems. Labels were assigned by expert consensus as either disorder present or absent for 2 categories: esophagogastric junction outflow disorders and peristalsis disorders. Several ML models were trained and evaluated. ML classifiers were developed using an 80/20 patient-level stratified split for training/validation and testing. Model selection was guided by internal evaluation through repeated 10-fold cross-validation. Model performance was assessed by accuracy and area under the receiver-operating characteristic curve (AUC-ROC). RESULTS: The GradientBoostingClassifier model outperformed the remaining ML models with an accuracy of 0.942 ± 0.015 and an AUC-ROC of 0.921 ± 0.041 for identifying disorders of esophagogastric junction outflow. The xGBClassifier model detected disorders of peristalsis with an accuracy of 0.809 ± 0.029 and an AUC-ROC of 0.871 ± 0.027. Performance was consistent across repeated validations, demonstrating model robustness and generalization. DISCUSSION: This multicenter, multidevice study demonstrates that ML models can accurately detect EMDs in HREM. Artificial intelligence-driven HREM may improve diagnosis by standardizing interpretation and reducing interobserver variability. Abstract | eng |
| dc.language.iso | eng | - |
| dc.publisher | Lippincott, Williams & Wilkins | - |
| dc.rights | openAccess | - |
| dc.subject | Artificial intelligence | eng |
| dc.subject | High-resolution esophageal manometry | eng |
| dc.subject | Machine learning | eng |
| dc.subject | Esophageal motility disorders | eng |
| dc.title | Artificial intelligence driven diagnosis of motility patterns in high-resolution esophageal manometry: A multicentric multidevice study | eng |
| dc.type | article | - |
| dc.peerreviewed | yes | - |
| dc.volume | N/A | - |
| dc.date.updated | 2025-11-21T10:43:05Z | - |
| dc.description.version | info:eu-repo/semantics/publishedVersion | - |
| dc.identifier.doi | 10.14309/ctg.0000000000000941 | - |
| dc.subject.fos | Domínio/Área Científica::Ciências Médicas::Medicina Clínica | por |
| iscte.identifier.ciencia | https://ciencia.iscte-iul.pt/id/ci-pub-113687 | - |
| iscte.alternateIdentifiers.wos | WOS:MEDLINE:41128763 | - |
| iscte.journal | Clinical and Translational Gastroenterology | - |
| Aparece nas coleções: | ISTAR-RI - Artigos em revistas científicas internacionais com arbitragem científica | |
Ficheiros deste registo:
| Ficheiro | Tamanho | Formato | |
|---|---|---|---|
| article_113687.pdf | 762,86 kB | Adobe PDF | Ver/Abrir |
Todos os registos no repositório estão protegidos por leis de copyright, com todos os direitos reservados.












