Utilize este identificador para referenciar este registo: http://hdl.handle.net/10071/35606
Registo completo
Campo DCValorIdioma
dc.contributor.authorMascarenhas, M.-
dc.contributor.authorMota, J.-
dc.contributor.authorCordeiro, J. R.-
dc.contributor.authorMendes, F.-
dc.contributor.authorMartins, M.-
dc.contributor.authorCardoso, P.-
dc.contributor.authorAlmeida, M. J.-
dc.contributor.authorPinto da Costa, A.-
dc.contributor.authorHajra Martinez, I.-
dc.contributor.authorMatallana Royo, V.-
dc.contributor.authorNiland, B.-
dc.contributor.authorDi Palma, J.-
dc.contributor.authorFerreira, J.-
dc.contributor.authorMacedo, G.-
dc.contributor.authorSantander, C.-
dc.date.accessioned2025-11-21T10:44:55Z-
dc.date.available2025-11-21T10:44:55Z-
dc.date.issued2025-
dc.identifier.citationMascarenhas, M., Mota, J., Cordeiro, J. R., Mendes, F., Martins, M., Cardoso, P., Almeida, M. J., Pinto da Costa, A., Hajra Martinez, I., Matallana Royo, V., Niland, B., Di Palma, J., Ferreira, J., Macedo, G., & Santander, C. (2025). Artificial intelligence driven diagnosis of motility patterns in high-resolution esophageal manometry: A multicentric multidevice study. Clinical and Translational Gastroenterology. https://doi.org/10.14309/ctg.0000000000000941-
dc.identifier.issn2155-384X-
dc.identifier.urihttp://hdl.handle.net/10071/35606-
dc.description.abstractINTRODUCTION: Esophageal motility disorders (EMDs) are common in clinical practice, with a high symptomatic burden and significant impact on the patients' quality of life. High-resolution esophageal manometry (HREM) is the gold standard for the evaluation of functional esophageal disorders. The Chicago Classification offers a standardized approach to HREM. However, HREM remains a complex procedure, both in data analysis and in accessibility. This study aimed to develop and validate machine learning (ML) models to detect EMDs according to the Chicago Classification. METHODS: We retrospectively analyzed 618 HREM examinations from 3 centers (Spain and the United States) using 2 recording systems. Labels were assigned by expert consensus as either disorder present or absent for 2 categories: esophagogastric junction outflow disorders and peristalsis disorders. Several ML models were trained and evaluated. ML classifiers were developed using an 80/20 patient-level stratified split for training/validation and testing. Model selection was guided by internal evaluation through repeated 10-fold cross-validation. Model performance was assessed by accuracy and area under the receiver-operating characteristic curve (AUC-ROC). RESULTS: The GradientBoostingClassifier model outperformed the remaining ML models with an accuracy of 0.942 ± 0.015 and an AUC-ROC of 0.921 ± 0.041 for identifying disorders of esophagogastric junction outflow. The xGBClassifier model detected disorders of peristalsis with an accuracy of 0.809 ± 0.029 and an AUC-ROC of 0.871 ± 0.027. Performance was consistent across repeated validations, demonstrating model robustness and generalization. DISCUSSION: This multicenter, multidevice study demonstrates that ML models can accurately detect EMDs in HREM. Artificial intelligence-driven HREM may improve diagnosis by standardizing interpretation and reducing interobserver variability. Abstracteng
dc.language.isoeng-
dc.publisherLippincott, Williams & Wilkins-
dc.rightsopenAccess-
dc.subjectArtificial intelligenceeng
dc.subjectHigh-resolution esophageal manometryeng
dc.subjectMachine learningeng
dc.subjectEsophageal motility disorderseng
dc.titleArtificial intelligence driven diagnosis of motility patterns in high-resolution esophageal manometry: A multicentric multidevice studyeng
dc.typearticle-
dc.peerreviewedyes-
dc.volumeN/A-
dc.date.updated2025-11-21T10:43:05Z-
dc.description.versioninfo:eu-repo/semantics/publishedVersion-
dc.identifier.doi10.14309/ctg.0000000000000941-
dc.subject.fosDomínio/Área Científica::Ciências Médicas::Medicina Clínicapor
iscte.identifier.cienciahttps://ciencia.iscte-iul.pt/id/ci-pub-113687-
iscte.alternateIdentifiers.wosWOS:MEDLINE:41128763-
iscte.journalClinical and Translational Gastroenterology-
Aparece nas coleções:ISTAR-RI - Artigos em revistas científicas internacionais com arbitragem científica

Ficheiros deste registo:
Ficheiro TamanhoFormato 
article_113687.pdf762,86 kBAdobe PDFVer/Abrir


FacebookTwitterDeliciousLinkedInDiggGoogle BookmarksMySpaceOrkut
Formato BibTex mendeley Endnote Logotipo do DeGóis Logotipo do Orcid 

Todos os registos no repositório estão protegidos por leis de copyright, com todos os direitos reservados.