Utilize este identificador para referenciar este registo: http://hdl.handle.net/10071/35266
Registo completo
Campo DCValorIdioma
dc.contributor.authorHarb, Y.-
dc.contributor.authorMoro, S.-
dc.contributor.authorHarb, A.-
dc.date.accessioned2025-10-03T10:39:25Z-
dc.date.issued2025-
dc.identifier.citationHarb, Y., Moro, S., & Harb, A. (2025). AI business writing assistant tools in practice: Text mining and statistical analysis of user experience. International Journal of Human–Computer Interaction. https://doi.org/10.1080/10447318.2025.2563743-
dc.identifier.issn1044-7318-
dc.identifier.urihttp://hdl.handle.net/10071/35266-
dc.description.abstractThis study employs a multi-method quantitative research design to review various popular AI writing assistant tools using 11562 actual users’ satisfied and dissatisfied reviews. The research design applies Kruskal-Wallis test to differentiate between AI writing assistants based on user rating, functionality, ease of use (EOU), value for money, and customer support attributes; uses the quantitative text analysis to identify satisfaction and dissatisfaction attributes; and employs topic modeling to uncover the specific related attributes that influence user satisfaction. The statistical analysis results indicated that there is a significant difference among AI writing assistant tools according to user rating, functionality, EOU, and customer support attributes. The text analysis revealed the attributes leading to user satisfaction and dissatisfaction. Topic modeling further identified both common and tool-specific attributes. This study provides a relatively comprehensive set of attributes and sub-attributes for evaluating AI writing assistant tools, which can serve as a foundation for future research.eng
dc.language.isoeng-
dc.publisherTaylor and Francis-
dc.relationUIDB/04466/2023-
dc.relationUIDP/04466/2023-
dc.rightsembargoedAccess-
dc.subjectAI business writing assistant toolseng
dc.subjectUser reviewseng
dc.subjectText analysiseng
dc.subjectUser satisfactioneng
dc.titleAI business writing assistant tools in practice: Text mining and statistical analysis of user experienceeng
dc.typearticle-
dc.peerreviewedyes-
dc.volumeN/A-
dc.date.updated2025-10-03T11:37:28Z-
dc.description.versioninfo:eu-repo/semantics/acceptedVersion-
dc.identifier.doi10.1080/10447318.2025.2563743-
dc.subject.fosDomínio/Área Científica::Ciências Naturais::Ciências da Computação e da Informaçãopor
dc.date.embargo2026-09-30-
iscte.subject.odsTrabalho digno e crescimento económicopor
iscte.subject.odsIndústria, inovação e infraestruturaspor
iscte.identifier.cienciahttps://ciencia.iscte-iul.pt/id/ci-pub-112983-
iscte.journalInternational Journal of Human–Computer Interaction-
Aparece nas coleções:ISTAR-RI - Artigos em revistas científicas internacionais com arbitragem científica

Ficheiros deste registo:
Ficheiro TamanhoFormato 
article_112983.pdf
  Restricted Access
1,09 MBAdobe PDFVer/Abrir Request a copy


FacebookTwitterDeliciousLinkedInDiggGoogle BookmarksMySpaceOrkut
Formato BibTex mendeley Endnote Logotipo do DeGóis Logotipo do Orcid 

Todos os registos no repositório estão protegidos por leis de copyright, com todos os direitos reservados.