Utilize este identificador para referenciar este registo: http://hdl.handle.net/10071/35153
Autoria: Trocin, C.
Cardoso, E.
Mikalef, P.
Editor: Maria Manuela Cruz-Cunha
Dulce Domingos
Emanuel Peres
Rui Rijo
Data: 2024
Título próprio: Algorithmic evaluations in breast cancer: The case of Champalimaud Foundation
Volume: 239
Título e volume do livro: Procedia Computer Science
Paginação: 1770 - 1777
Título do evento: CENTERIS – International Conference on ENTERprise Information Systems / ProjMAN - International Conference on Project MANagement / HCist - International Conference on Health and Social Care Information Systems and Technologies 2023
Referência bibliográfica: Trocin, C., Cardoso, E., & Mikalef, P. (2024). Algorithmic evaluations in breast cancer: The case of Champalimaud Foundation. In M. M. C. Cunha, D. Domingos, E. Peres, & R. Rijo (Eds.), Procedia Computer Science (Vol.239, pp. 1770-1777). Elsevier. https://dx.doi.org/10.1016/j.procs.2024.06.356
ISSN: 1877-0509
DOI (Digital Object Identifier): 10.1016/j.procs.2024.06.356
Palavras-chave: Aesthetics
Breast cancer surgery
Evaluation
Gioia methodology
Machine learning
Resumo: Algorithmic evaluations are increasingly used to make decisions thanks to the perception of objective measures of quality and performance. However, little is known about how the current evaluation methods change with ML algorithms and with what consequences for the actors and organizations being evaluated. We conducted an exploratory case study in the breast unit of the Champalimaud Foundation in Lisbon. Gioia methodology guided the collection and analysis of semi-structured interviews and archival data. Our results show that besides generating visible and direct changes (e.g., extraction and quantification of relevant criteria with systematic approaches), algorithmic evaluations trigger indirect and less visible dynamics (e.g., adding a new dimension - aesthetic score - in the evaluation of research units), which have profound implications on how institutions operate and how resources are allocated based on the ranking lists. We contribute to digital undertow and institutional displacement and human ML collaborations by explaining the processes through which the new methods are used in medical communities and their less visible yet impactful consequences.
Arbitragem científica: yes
Acesso: Acesso Aberto
Aparece nas coleções:ISTAR-CRI - Comunicações a conferências internacionais

Ficheiros deste registo:
Ficheiro TamanhoFormato 
conferenceObject_109122.pdf614,58 kBAdobe PDFVer/Abrir


FacebookTwitterDeliciousLinkedInDiggGoogle BookmarksMySpaceOrkut
Formato BibTex mendeley Endnote Logotipo do DeGóis Logotipo do Orcid 

Todos os registos no repositório estão protegidos por leis de copyright, com todos os direitos reservados.