Utilize este identificador para referenciar este registo:
http://hdl.handle.net/10071/34581
Registo completo
Campo DC | Valor | Idioma |
---|---|---|
dc.contributor.author | Cosme, D. | - |
dc.contributor.author | Galvão, A. | - |
dc.contributor.author | Brito e Abreu, F. | - |
dc.contributor.editor | Frans Coenen | - |
dc.contributor.editor | Ana Fred | - |
dc.contributor.editor | Jorge Bernardino | - |
dc.date.accessioned | 2025-06-02T10:51:38Z | - |
dc.date.available | 2025-06-02T10:51:38Z | - |
dc.date.issued | 2024 | - |
dc.identifier.citation | Cosme, D., Galvão, A., & Brito e Abreu, F. (2024). A systematic literature review on LLM-based information retrieval: The issue of contents classification. In F. Coenen, A. Fred, & J. Bernardino (Eds.), Proceedings of the 16th International Joint Conference on Knowledge Discovery, Knowledge Engineering and Knowledge Management (pp. 135-146). SciTePress. https://doi.org/10.5220/0013062300003838 | - |
dc.identifier.isbn | 978-989-758-716-0 | - |
dc.identifier.issn | 2184-3228 | - |
dc.identifier.uri | http://hdl.handle.net/10071/34581 | - |
dc.description.abstract | This paper conducts a systematic literature review on applying Large Language Models (LLMs) in information retrieval, specifically focusing on content classification. The review explores how LLMs, particularly those based on transformer architectures, have addressed long-standing challenges in text classification by leveraging their advanced context understanding and generative capabilities. Despite the rapid advancements, the review identifies gaps in current research, such as the need for improved transparency, reduced computational costs, and the handling of model hallucinations. The paper concludes with recommendations for future research directions to optimize the use of LLMs in content classification, ensuring their effective deployment across various domains. | eng |
dc.language.iso | eng | - |
dc.publisher | SciTePress | - |
dc.relation | info:eu-repo/grantAgreement/FCT/6817 - DCRRNI ID/UIDB%2F04466%2F2020/PT | - |
dc.relation | info:eu-repo/grantAgreement/FCT/Concurso de avaliação no âmbito do Programa Plurianual de Financiamento de Unidades de I&D (2017%2F2018) - Financiamento Base/UIDB%2F04085%2F2020/PT | - |
dc.relation.ispartof | Proceedings of the 16th International Joint Conference on Knowledge Discovery, Knowledge Engineering and Knowledge Management | - |
dc.rights | openAccess | - |
dc.subject | Systematic Literature Review | eng |
dc.subject | Large Language Model | eng |
dc.subject | Information Retrieval | eng |
dc.subject | Contents Classification | eng |
dc.title | A systematic literature review on LLM-based information retrieval: The issue of contents classification | eng |
dc.type | conferenceObject | - |
dc.event.title | 16th International Joint Conference on Knowledge Discovery, Knowledge Engineering and Knowledge Management (KDIR2024) | - |
dc.event.type | Conferência | pt |
dc.event.location | Porto, Portugal | eng |
dc.event.date | 2024 | - |
dc.pagination | 135 - 146 | - |
dc.peerreviewed | yes | - |
dc.date.updated | 2025-06-02T11:50:28Z | - |
dc.description.version | info:eu-repo/semantics/publishedVersion | - |
dc.identifier.doi | 10.5220/0013062300003838 | - |
dc.subject.fos | Domínio/Área Científica::Ciências Naturais::Ciências da Computação e da Informação | por |
dc.subject.fos | Domínio/Área Científica::Engenharia e Tecnologia::Engenharia Eletrotécnica, Eletrónica e Informática | por |
iscte.subject.ods | Educação de qualidade | por |
iscte.subject.ods | Indústria, inovação e infraestruturas | por |
iscte.identifier.ciencia | https://ciencia.iscte-iul.pt/id/ci-pub-106644 | - |
iscte.alternateIdentifiers.scopus | 2-s2.0-85210477539 | - |
Aparece nas coleções: | ISTAR-CRI - Comunicações a conferências internacionais |
Ficheiros deste registo:
Ficheiro | Tamanho | Formato | |
---|---|---|---|
conferenceObject_106644.pdf | 376,87 kB | Adobe PDF | Ver/Abrir |
Todos os registos no repositório estão protegidos por leis de copyright, com todos os direitos reservados.