Utilize este identificador para referenciar este registo: http://hdl.handle.net/10071/34581
Registo completo
Campo DCValorIdioma
dc.contributor.authorCosme, D.-
dc.contributor.authorGalvão, A.-
dc.contributor.authorBrito e Abreu, F.-
dc.contributor.editorFrans Coenen-
dc.contributor.editorAna Fred-
dc.contributor.editorJorge Bernardino-
dc.date.accessioned2025-06-02T10:51:38Z-
dc.date.available2025-06-02T10:51:38Z-
dc.date.issued2024-
dc.identifier.citationCosme, D., Galvão, A., & Brito e Abreu, F. (2024). A systematic literature review on LLM-based information retrieval: The issue of contents classification. In F. Coenen, A. Fred, & J. Bernardino (Eds.), Proceedings of the 16th International Joint Conference on Knowledge Discovery, Knowledge Engineering and Knowledge Management (pp. 135-146). SciTePress. https://doi.org/10.5220/0013062300003838-
dc.identifier.isbn978-989-758-716-0-
dc.identifier.issn2184-3228-
dc.identifier.urihttp://hdl.handle.net/10071/34581-
dc.description.abstractThis paper conducts a systematic literature review on applying Large Language Models (LLMs) in information retrieval, specifically focusing on content classification. The review explores how LLMs, particularly those based on transformer architectures, have addressed long-standing challenges in text classification by leveraging their advanced context understanding and generative capabilities. Despite the rapid advancements, the review identifies gaps in current research, such as the need for improved transparency, reduced computational costs, and the handling of model hallucinations. The paper concludes with recommendations for future research directions to optimize the use of LLMs in content classification, ensuring their effective deployment across various domains.eng
dc.language.isoeng-
dc.publisherSciTePress-
dc.relationinfo:eu-repo/grantAgreement/FCT/6817 - DCRRNI ID/UIDB%2F04466%2F2020/PT-
dc.relationinfo:eu-repo/grantAgreement/FCT/Concurso de avaliação no âmbito do Programa Plurianual de Financiamento de Unidades de I&D (2017%2F2018) - Financiamento Base/UIDB%2F04085%2F2020/PT-
dc.relation.ispartofProceedings of the 16th International Joint Conference on Knowledge Discovery, Knowledge Engineering and Knowledge Management-
dc.rightsopenAccess-
dc.subjectSystematic Literature Revieweng
dc.subjectLarge Language Modeleng
dc.subjectInformation Retrievaleng
dc.subjectContents Classificationeng
dc.titleA systematic literature review on LLM-based information retrieval: The issue of contents classificationeng
dc.typeconferenceObject-
dc.event.title16th International Joint Conference on Knowledge Discovery, Knowledge Engineering and Knowledge Management (KDIR2024)-
dc.event.typeConferênciapt
dc.event.locationPorto, Portugaleng
dc.event.date2024-
dc.pagination135 - 146-
dc.peerreviewedyes-
dc.date.updated2025-06-02T11:50:28Z-
dc.description.versioninfo:eu-repo/semantics/publishedVersion-
dc.identifier.doi10.5220/0013062300003838-
dc.subject.fosDomínio/Área Científica::Ciências Naturais::Ciências da Computação e da Informaçãopor
dc.subject.fosDomínio/Área Científica::Engenharia e Tecnologia::Engenharia Eletrotécnica, Eletrónica e Informáticapor
iscte.subject.odsEducação de qualidadepor
iscte.subject.odsIndústria, inovação e infraestruturaspor
iscte.identifier.cienciahttps://ciencia.iscte-iul.pt/id/ci-pub-106644-
iscte.alternateIdentifiers.scopus2-s2.0-85210477539-
Aparece nas coleções:ISTAR-CRI - Comunicações a conferências internacionais

Ficheiros deste registo:
Ficheiro TamanhoFormato 
conferenceObject_106644.pdf376,87 kBAdobe PDFVer/Abrir


FacebookTwitterDeliciousLinkedInDiggGoogle BookmarksMySpaceOrkut
Formato BibTex mendeley Endnote Logotipo do DeGóis Logotipo do Orcid 

Todos os registos no repositório estão protegidos por leis de copyright, com todos os direitos reservados.