Utilize este identificador para referenciar este registo: http://hdl.handle.net/10071/34411
Registo completo
Campo DCValorIdioma
dc.contributor.authorBelchior, L. M.-
dc.contributor.authorAntónio, N.-
dc.contributor.authorFernandes, E.-
dc.date.accessioned2025-05-13T18:58:09Z-
dc.date.available2025-05-13T18:58:09Z-
dc.date.issued2024-
dc.identifier.citationBelchior, L. M., António, N., & Fernandes, E. (2024). Online newspaper subscriptions: Using machine learning to reduce and understand customer churn. Journal of Media Business Studies, 21(4), 364–387. https://doi.org/10.1080/16522354.2024.2343638-
dc.identifier.issn1652-2354-
dc.identifier.urihttp://hdl.handle.net/10071/34411-
dc.description.abstractModelling customer loyalty has been a central issue in customer relationship management, particularly in digital subscription business models. To guarantee news media sustainability, publishers implemented subscription models that need to define successful retention strategies. Thus, churn management has become pivotal in the media subscription business. The present study aims to understand what drives subscribers to churn by performing a Machine Learning approach to model the propensity to churn of online subscribers of a Portuguese newspaper. Two models were developed, tested, and evaluated in two timeframes. The first one considered all Business to Consumer (B2C) subscriptions, and the second only the B2C non-recurring subscriptions. The experimental results revealed important patterns of churners, which allowed the marketing and editorial teams to implement churn prevention and retention measures.eng
dc.language.isoeng-
dc.publisherTaylor and Francis-
dc.relationUIDB/04152/2020-
dc.rightsopenAccess-
dc.subjectChurn predictioneng
dc.subjectOnline subscriptionseng
dc.subjectData miningeng
dc.subjectDigital journalismeng
dc.subjectReader engagementeng
dc.titleOnline newspaper subscriptions: Using machine learning to reduce and understand customer churneng
dc.typearticle-
dc.pagination364 - 387-
dc.peerreviewedyes-
dc.volume21-
dc.number4-
dc.date.updated2025-05-13T19:56:05Z-
dc.description.versioninfo:eu-repo/semantics/publishedVersion-
dc.identifier.doi10.1080/16522354.2024.2343638-
dc.subject.fosDomínio/Área Científica::Ciências Sociais::Economia e Gestãopor
dc.subject.fosDomínio/Área Científica::Ciências Sociais::Ciências da Comunicaçãopor
iscte.identifier.cienciahttps://ciencia.iscte-iul.pt/id/ci-pub-110675-
iscte.alternateIdentifiers.wosWOS:WOS:001206681500001-
iscte.alternateIdentifiers.scopus2-s2.0-85191159701-
iscte.journalJournal of Media Business Studies-
Aparece nas coleções:ISTAR-RI - Artigos em revistas científicas internacionais com arbitragem científica

Ficheiros deste registo:
Ficheiro TamanhoFormato 
article_1106753,74 MBAdobe PDFVer/Abrir


FacebookTwitterDeliciousLinkedInDiggGoogle BookmarksMySpaceOrkut
Formato BibTex mendeley Endnote Logotipo do DeGóis Logotipo do Orcid 

Todos os registos no repositório estão protegidos por leis de copyright, com todos os direitos reservados.