Utilize este identificador para referenciar este registo: http://hdl.handle.net/10071/34396
Registo completo
Campo DCValorIdioma
dc.contributor.authorDuarte, M.-
dc.contributor.authorFerreira da Silva, C.-
dc.contributor.authorMoro, S.-
dc.date.accessioned2025-05-13T09:33:41Z-
dc.date.issued2025-
dc.identifier.citationDuarte, M., Ferreira da Silva, C., & Moro, S. (2025). Machine learning models to predict the COVID-19 reproduction rate: Combining non-pharmaceutical interventions with sociodemographic and cultural characteristics. Informatics for Health and Social Care, 50(2), 81-99. https://doi.org/10.1080/17538157.2025.2491517-
dc.identifier.issn1753-8157-
dc.identifier.urihttp://hdl.handle.net/10071/34396-
dc.description.abstractSince the beginning of the COVID-19 pandemic, countries worldwide have implemented a set of Non-Pharmaceutical Interventions (NPIs) to prevent the dissemination of the pandemic. Few studies applied machine learning models to compare the use of NPIs, socioeconomic and demographic characteristics, and cultural dimensions in predicting the reproduction rate Rt. We adopted the CRoss-Industry Standard Process for Data Mining (CRISP-DM) methodology using as data sources the “Our World in Data COVID-19”, the “Oxford COVID-19 Government Response Tracker” and the Hofstede Insights data. We analysed the impact that the Hofstede's cultural dimensions, the implementation of various degrees of restriction of NPIs and the sociodemographic variables may have in the reproduction rate by applying machine learning models to understand whether cultural characteristics are useful information to improve reproduction rate predictions. We included data from 101 countries to train several machine learning models to compare the results between the models with and without the Hofstede's cultural dimensions. Our results show the use of cultural dimensions helps to improve the models, and that the ones that obtained a better prediction of the Rt were the ensemble models, especially the Random Forest.eng
dc.language.isoeng-
dc.publisherTaylor and Francis-
dc.relationinfo:eu-repo/grantAgreement/FCT/6817 - DCRRNI ID/UIDB%2F04466%2F2020/PT-
dc.relation101177236-
dc.relation101071330-
dc.relationinfo:eu-repo/grantAgreement/FCT/6817 - DCRRNI ID/UIDP%2F04466%2F2020/PT-
dc.rightsembargoedAccess-
dc.subjectCOVID-19eng
dc.subjectNPIseng
dc.subjectNon-pharmaceutical interventionseng
dc.subjectHofstede’s cultural dimensionseng
dc.subjectMachine learningeng
dc.subjectReproduction rate Rteng
dc.titleMachine learning models to predict the COVID-19 reproduction rate: Combining non-pharmaceutical interventions with sociodemographic and cultural characteristicseng
dc.typearticle-
dc.pagination81 - 99-
dc.peerreviewedyes-
dc.volume50-
dc.number2-
dc.date.updated2025-05-19T10:28:55Z-
dc.description.versioninfo:eu-repo/semantics/acceptedVersion-
dc.identifier.doi10.1080/17538157.2025.2491517-
dc.subject.fosDomínio/Área Científica::Ciências Naturais::Ciências da Computação e da Informaçãopor
dc.subject.fosDomínio/Área Científica::Engenharia e Tecnologia::Engenharia Eletrotécnica, Eletrónica e Informáticapor
dc.subject.fosDomínio/Área Científica::Ciências Médicas::Ciências da Saúdepor
dc.date.embargo2026-04-29-
iscte.subject.odsSaúde de qualidadepor
iscte.subject.odsEducação de qualidadepor
iscte.subject.odsCidades e comunidades sustentáveispor
iscte.identifier.cienciahttps://ciencia.iscte-iul.pt/id/ci-pub-110630-
iscte.alternateIdentifiers.wosWOS:WOS:001479047200001-
iscte.alternateIdentifiers.scopus2-s2.0-105003891236-
iscte.journalInformatics for Health and Social Care-
Aparece nas coleções:ISTAR-RI - Artigos em revistas científicas internacionais com arbitragem científica

Ficheiros deste registo:
Ficheiro TamanhoFormato 
article_110630.pdf
  Restricted Access
1,15 MBAdobe PDFVer/Abrir Request a copy


FacebookTwitterDeliciousLinkedInDiggGoogle BookmarksMySpaceOrkut
Formato BibTex mendeley Endnote Logotipo do DeGóis Logotipo do Orcid 

Todos os registos no repositório estão protegidos por leis de copyright, com todos os direitos reservados.