Utilize este identificador para referenciar este registo:
http://hdl.handle.net/10071/34326
Registo completo
Campo DC | Valor | Idioma |
---|---|---|
dc.contributor.author | Polido, S. | - |
dc.contributor.author | Napoli, O. | - |
dc.contributor.author | Breternitz Jr, M. | - |
dc.contributor.author | Almeida, A. de | - |
dc.date.accessioned | 2025-05-06T08:39:18Z | - |
dc.date.issued | 2024 | - |
dc.identifier.citation | Polido, S., Napoli, O., Breternitz Jr, M., & Almeida, A. de (2024). Challenges in federated learning trained anomaly detection applied to hospital data without a baseline. Proceedings 22nd IEEE Mediterranean Electrotechnical Conference (MELECON) (pp. 1230-1235). IEEE. https://doi.org/10.1109/MELECON56669.2024.10608642 | - |
dc.identifier.isbn | 979-8-3503-8702-5 | - |
dc.identifier.issn | 2158-8473 | - |
dc.identifier.uri | http://hdl.handle.net/10071/34326 | - |
dc.description.abstract | During the COVID-19 pandemic, data collected via personal wearable devices was used to create models for the detection of a possible alteration of health status by defining an individual’s healthy baseline data. This work explores the usage of one of those models to enable a Federated Learning (FL) approach aiming to achieve a process applicable to sensing data from hospital-admitted patients. The fact that hospital data does not contain any samples that can confidently be considered ”healthy” and thus serve as a baseline makes hospital COVID-19 detection a relevant challenge for anomaly detection techniques. After an adequate data preparation process, we were able to use the individually trained models to build an aggregated model for application to hospital data. Although the FL models obtain worse mean precision and recall scores when compared to the individual models, this experiment brings forth relevant knowledge on the compromises that might be necessary to develop a clinical anomaly detection model to be used in an Intensive Care Unit or monitored patients’ data lacking baseline samples. | eng |
dc.language.iso | eng | - |
dc.publisher | IEEE | - |
dc.relation | info:eu-repo/grantAgreement/FCT/6817 - DCRRNI ID/UIDB%2F04466%2F2020/PT | - |
dc.relation | info:eu-repo/grantAgreement/FCT/3599-PPCDT/DSAIPA%2FAI%2F0122%2F2020/PT | - |
dc.relation.ispartof | Proceedings 22nd IEEE Mediterranean Electrotechnical Conference (MELECON) | - |
dc.rights | embargoedAccess | - |
dc.subject | Anomaly detection | eng |
dc.subject | Federated learning | eng |
dc.subject | Health data model | eng |
dc.subject | Machine learning -- Machine learning | eng |
dc.title | Challenges in federated learning trained anomaly detection applied to hospital data without a baseline | eng |
dc.type | conferenceObject | - |
dc.event.title | 22nd IEEE Mediterranean Electrotechnical Conference (MELECON 2024) | - |
dc.event.type | Conferência | pt |
dc.event.location | Porto | eng |
dc.event.date | 2024 | - |
dc.pagination | 1230 - 1235 | - |
dc.peerreviewed | yes | - |
dc.date.updated | 2025-05-06T09:36:02Z | - |
dc.description.version | info:eu-repo/semantics/acceptedVersion | - |
dc.identifier.doi | 10.1109/MELECON56669.2024 | - |
dc.date.embargo | 2026-05-31 | - |
iscte.subject.ods | Saúde de qualidade | por |
iscte.subject.ods | Indústria, inovação e infraestruturas | por |
iscte.identifier.ciencia | https://ciencia.iscte-iul.pt/id/ci-pub-104821 | - |
Aparece nas coleções: | ISTAR-CRI - Comunicações a conferências internacionais |
Ficheiros deste registo:
Ficheiro | Tamanho | Formato | |
---|---|---|---|
conferenceObject_104821.pdf Restricted Access | 302,52 kB | Adobe PDF | Ver/Abrir Request a copy |
Todos os registos no repositório estão protegidos por leis de copyright, com todos os direitos reservados.