Utilize este identificador para referenciar este registo: http://hdl.handle.net/10071/34326
Registo completo
Campo DCValorIdioma
dc.contributor.authorPolido, S.-
dc.contributor.authorNapoli, O.-
dc.contributor.authorBreternitz Jr, M.-
dc.contributor.authorAlmeida, A. de-
dc.date.accessioned2025-05-06T08:39:18Z-
dc.date.issued2024-
dc.identifier.citationPolido, S., Napoli, O., Breternitz Jr, M., & Almeida, A. de (2024). Challenges in federated learning trained anomaly detection applied to hospital data without a baseline. Proceedings 22nd IEEE Mediterranean Electrotechnical Conference (MELECON) (pp. 1230-1235). IEEE. https://doi.org/10.1109/MELECON56669.2024.10608642-
dc.identifier.isbn979-8-3503-8702-5-
dc.identifier.issn2158-8473-
dc.identifier.urihttp://hdl.handle.net/10071/34326-
dc.description.abstractDuring the COVID-19 pandemic, data collected via personal wearable devices was used to create models for the detection of a possible alteration of health status by defining an individual’s healthy baseline data. This work explores the usage of one of those models to enable a Federated Learning (FL) approach aiming to achieve a process applicable to sensing data from hospital-admitted patients. The fact that hospital data does not contain any samples that can confidently be considered ”healthy” and thus serve as a baseline makes hospital COVID-19 detection a relevant challenge for anomaly detection techniques. After an adequate data preparation process, we were able to use the individually trained models to build an aggregated model for application to hospital data. Although the FL models obtain worse mean precision and recall scores when compared to the individual models, this experiment brings forth relevant knowledge on the compromises that might be necessary to develop a clinical anomaly detection model to be used in an Intensive Care Unit or monitored patients’ data lacking baseline samples.eng
dc.language.isoeng-
dc.publisherIEEE-
dc.relationinfo:eu-repo/grantAgreement/FCT/6817 - DCRRNI ID/UIDB%2F04466%2F2020/PT-
dc.relationinfo:eu-repo/grantAgreement/FCT/3599-PPCDT/DSAIPA%2FAI%2F0122%2F2020/PT-
dc.relation.ispartofProceedings 22nd IEEE Mediterranean Electrotechnical Conference (MELECON)-
dc.rightsembargoedAccess-
dc.subjectAnomaly detectioneng
dc.subjectFederated learningeng
dc.subjectHealth data modeleng
dc.subjectMachine learning -- Machine learningeng
dc.titleChallenges in federated learning trained anomaly detection applied to hospital data without a baselineeng
dc.typeconferenceObject-
dc.event.title22nd IEEE Mediterranean Electrotechnical Conference (MELECON 2024)-
dc.event.typeConferênciapt
dc.event.locationPortoeng
dc.event.date2024-
dc.pagination1230 - 1235-
dc.peerreviewedyes-
dc.date.updated2025-05-06T09:36:02Z-
dc.description.versioninfo:eu-repo/semantics/acceptedVersion-
dc.identifier.doi10.1109/MELECON56669.2024-
dc.date.embargo2026-05-31-
iscte.subject.odsSaúde de qualidadepor
iscte.subject.odsIndústria, inovação e infraestruturaspor
iscte.identifier.cienciahttps://ciencia.iscte-iul.pt/id/ci-pub-104821-
Aparece nas coleções:ISTAR-CRI - Comunicações a conferências internacionais

Ficheiros deste registo:
Ficheiro TamanhoFormato 
conferenceObject_104821.pdf
  Restricted Access
302,52 kBAdobe PDFVer/Abrir Request a copy


FacebookTwitterDeliciousLinkedInDiggGoogle BookmarksMySpaceOrkut
Formato BibTex mendeley Endnote Logotipo do DeGóis Logotipo do Orcid 

Todos os registos no repositório estão protegidos por leis de copyright, com todos os direitos reservados.