Utilize este identificador para referenciar este registo: http://hdl.handle.net/10071/33102
Registo completo
Campo DCValorIdioma
dc.contributor.authorBrites, C.-
dc.contributor.authorAscenso, J.-
dc.date.accessioned2025-01-20T12:12:32Z-
dc.date.available2025-01-20T12:12:32Z-
dc.date.issued2025-
dc.identifier.citationBrites, C., & Ascenso, J. (2025). Neuromorphic vision data coding: Classifying and reviewing the literature. IEEE Access, 13, 14626-14657. https://doi.org/10.1109/ACCESS.2025.3528375-
dc.identifier.issn2169-3536-
dc.identifier.urihttp://hdl.handle.net/10071/33102-
dc.description.abstractIn recent years, visual sensors have been quickly improving towards mimicking the visual information acquisition process of human brain by responding to illumination changes as they occur in time rather than at fixed time intervals. In this context, the so-called neuromorphic vision sensors depart from the conventional frame-based image sensors by adopting a paradigm shift in the way visual information is acquired. This new way of visual information acquisition enables faster and asynchronous per-pixel responses/recordings driven by the scene dynamics with a very high dynamic range and low power consumption. However, the huge amount of data outputted by the emerging neuromorphic vision sensors critically demands highly efficient coding solutions in order applications may take full advantage of these new, attractive sensors’ capabilities. For this reason, considerable research efforts have been invested in recent years towards developing increasingly efficient neuromorphic vision data coding (NVDC) solutions. In this context, the main objective of this paper is to provide a comprehensive overview of NVDC solutions in the literature, guided by a novel classification taxonomy, which allows better organizing this emerging field. In this way, more solid conclusions can be drawn about the current NVDC status quo, thus allowing to better drive future research and standardization developments in this emerging technical area.eng
dc.language.isoeng-
dc.publisherIEEE-
dc.relationinfo:eu-repo/grantAgreement/FCT/3599-PPCDT/PTDC%2FEEI-COM%2F7775%2F2020/PT-
dc.rightsopenAccess-
dc.subjectDynamic vision sensoreng
dc.subjectEvent cameraeng
dc.subjectNeuromorphic vision data codingeng
dc.subjectSpike cameraeng
dc.subjectTaxonomyeng
dc.titleNeuromorphic vision data coding: Classifying and reviewing the literatureeng
dc.typearticle-
dc.pagination14626 - 14657-
dc.peerreviewedyes-
dc.volume13-
dc.date.updated2025-01-27T12:07:04Z-
dc.description.versioninfo:eu-repo/semantics/publishedVersion-
dc.identifier.doi10.1109/ACCESS.2025.3528375-
dc.subject.fosDomínio/Área Científica::Ciências Naturais::Ciências da Computação e da Informaçãopor
dc.subject.fosDomínio/Área Científica::Engenharia e Tecnologia::Engenharia Eletrotécnica, Eletrónica e Informáticapor
iscte.identifier.cienciahttps://ciencia.iscte-iul.pt/id/ci-pub-108753-
iscte.journalIEEE Access-
Aparece nas coleções:IT-RI - Artigos em revistas científicas internacionais com arbitragem científica

Ficheiros deste registo:
Ficheiro TamanhoFormato 
article_108753.pdf5,64 MBAdobe PDFVer/Abrir


FacebookTwitterDeliciousLinkedInDiggGoogle BookmarksMySpaceOrkut
Formato BibTex mendeley Endnote Logotipo do DeGóis Logotipo do Orcid 

Todos os registos no repositório estão protegidos por leis de copyright, com todos os direitos reservados.