
Received 5 October 2024, accepted 10 December 2024, date of publication 13 January 2025, date of current version 23 January 2025.

Digital Object Identifier 10.1109/ACCESS.2025.3528375

Neuromorphic Vision Data Coding: Classifying
and Reviewing the Literature
CATARINA BRITES 1, (Member, IEEE), AND JOÃO ASCENSO 2, (Senior Member, IEEE)
1Instituto de Telecomunicações, Instituto Universitário de Lisboa (ISCTE-IUL), 1649-026 Lisbon, Portugal
2Instituto de Telecomunicações, Instituto Superior Técnico, University of Lisbon, 1049-001 Lisbon, Portugal

Corresponding author: Catarina Brites (catarina.brites@lx.it.pt)

This work was supported in part by RayShaper SA, Valais, Switzerland, through the Project ‘‘Event Aware Sensor Compression;’’
and in part by the Fundação para a Ciência e a Tecnologia (FCT), Portugal, through the Project ‘‘Deep Compression: Emerging
Paradigm for Image Coding’’ under Grant PTDC/EEI-COM/7775/2020.

ABSTRACT In recent years, visual sensors have been quickly improving towards mimicking the visual
information acquisition process of human brain by responding to illumination changes as they occur
in time rather than at fixed time intervals. In this context, the so-called neuromorphic vision sensors
depart from the conventional frame-based image sensors by adopting a paradigm shift in the way visual
information is acquired. This new way of visual information acquisition enables faster and asynchronous
per-pixel responses/recordings driven by the scene dynamics with a very high dynamic range and low
power consumption. However, depending on the application scenario, the emerging neuromorphic vision
sensors may generate a large volume of data, thus critically demanding highly efficient coding solutions
in order applications may take full advantage of these new, attractive sensors’ capabilities. For this reason,
considerable research efforts have been invested in recent years towards developing increasingly efficient
neuromorphic vision data coding (NVDC) solutions. In this context, the main objective of this paper is to
provide a comprehensive overview of NVDC solutions in the literature, guided by a novel classification
taxonomy, which allows better organizing this emerging field. In this way, more solid conclusions can be
drawn about the current NVDC status quo, thus allowing to better drive future research and standardization
developments in this emerging technical area.

INDEX TERMS Dynamic vision sensor, event camera, neuromorphic vision data coding, spike camera,
taxonomy.

I. INTRODUCTION
Neuromorphic vision sensors are bio-inspired sensors that try
to mimic the sensing behavior of a biological retina. These
emerging sensors pose a paradigm shift in the visual infor-
mation acquisition (sensing) model, the so-called frameless
paradigm, where visual information is no longer acquired
as a 2D matrix, i.e., frame. As it is well-known, in the
conventional frame-based paradigm, all sensor pixels acquire
visual information simultaneously, independently of the
scene dynamics, at regular time intervals (i.e., constant fram-
erate). However, in the emerging frameless paradigm, each
sensor pixel is in charge of controlling its own visual informa-
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tion acquisition process, in an asynchronous and independent
way, according to the scene dynamics, thus producing a vari-
able data rate output; scene dynamics refers to the change of
lightning/illumination conditions and/or motion in the scene
and/or sensor/camera motion.

By incorporating ‘‘intelligent’’ pixels, frameless-based
(i.e., neuromorphic) vision sensors provide interesting advan-
tages over conventional frame-based image sensors, such
as high temporal resolution (smaller time interval at which
a sensor pixel can react/respond to the scene dynamics),
very high dynamic range, low latency, and low power con-
sumption. These are rather compelling properties notably
in scenarios that are particularly challenging to the conven-
tional frame-based image sensors, such as the ones involving
visual scenes with high-speed motion and/or uncontrolled
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lighting conditions, where usually this type of (frame-based)
image sensors fail to provide good performance; autonomous
driving, drones and robotics are just a few examples of
increasingly relevant applications in humans’ daily lives
where those challenging scenarios occur and, thus, can bene-
fit from the neuromorphic vision sensors usage. Moreover,
neuromorphic vision sensors may also have application in
industrial automation, visual surveillance, augmented reality,
and mobile environments, where fast response, high dynamic
range or low power consumption are critically needed. Due
to its potential and availability, neuromorphic vision sensors,
also known in the literature as event-based sensors, dynamic
vision sensors, silicon retinas, spike cameras, asynchronous
image sensors or frameless imaging sensors, are nowadays
attracting a great deal of attention by the research community
from both academia and industry.

Currently, there are twomain types of neuromorphic vision
cameras, the so-called event cameras and spike cameras,
which, roughly speaking, differ mainly on two aspects: 1) the
way visual information is acquired, i.e., sampled, and conse-
quently on the output data produced (event data versus spike
data); and 2) the visual information they represent (moving
areas only versus both static and moving areas of the visual
scene acquired). The event cameras follow a differential sam-
pling model in which time-domain changes in the incoming
light intensity, i.e., temporal contrast, are pixel-wise detected
and compared to a threshold, triggering a so-called event if it
exceeds the threshold. On the other hand, the spike cameras
follow an integral sampling model in which time-domain
accumulation of the incoming light intensity is carried out
pixel-wise and compared to a threshold, firing a so-called
spike if the threshold is exceeded. In this context, events are
triggered by event sensor pixels ‘observing’ scene’s moving
objects only, while spikes are fired by spike sensor pixels
‘observing’ both static and moving objects of the scene to be
acquired. While the dynamic vision sensor (DVS) [1], [2], [3]
was the first event camera to bemade commercially available,
among several nowadays available [4], the so-called Vidar
camera [5], [6] is the only spike camera currently reported in
the literature and, to the best of the authors knowledge, is not
commercially available.

Differently from the absolute intensity value (simultane-
ously) outputted by every pixel in a conventional frame-based
image sensor (grayscale/color value resulting from incoming
light intensity accumulation over a specific exposure time),
an event is typically represented by a 4-tuple ⟨x, y, t , p⟩ (see
FIGURE I). This ordinary representation of an event contains
the location (x, y) within the (event-based) sensor (pixel coor-
dinates or addresses) where the event occurred, the timestamp
t , i.e., the time at which the event was triggered, and the
polarity p of the event, indicating weather a light intensity
increase (p = 1 or ‘ON’ event) or decrease (p = –1 or ‘OFF’
event) occurred; thus, (x, y), t , and p constitute the event loca-
tion information, the event time information, and the event
polarity information, respectively. This 4-tuple event repre-
sentation is sometimes referred to in the literature as address

event representation (AER), as this is the data representation
used by the AER communication protocol to asynchronously
transmit information (such as events) from the sensor to the
event camera output or between asynchronous chips. As far as
the spike is concerned, it is typically associated to an ‘ON’-
or ‘OFF’- value, corresponding to a spike fired (‘1’) or not
(‘0’). Although a (spike-based) sensor pixel can fire spikes
asynchronously and continuously (at an arbitrary time), the
spike camera currently reported in the literature (the Vidar
camera) only reads out the spikes fired, also known as spike
firing states, periodically with a fixed time interval T (in the
order of µs) and does that for every sensor pixel. This means
that, at sampling time t = T , the spike firing state (‘0’ or ‘1’
value) of every pixel is read, forming a (binary) spike frame,
with the height and width of the sensor pixel array; naturally,
as the time passes, spike frames are formed one after the other,
creating an 3D array of binary spike frames.

In the related literature, the event camera pixel output is
most of the times called event sequence or event stream
while the spike camera pixel output is typically known as
spike train. The asynchronous sensor event sequence/sensor
spike train, resulting from the (pixel) event sequences/spike
trains of all sensor pixels, represent, therefore, the visual
information ‘observed’ by the emerging event/spike sensors.
It is worth noting that the sensor event sequence/sensor spike
train can be further processed elsewhere in the camera or by
a vision application for several purposes/tasks, including a
more efficient representation (through coding). In this paper,
neuromorphic vision data (NVD) is the generic terminology
used to refer to both event and spike data.

FIGURE 1. Comparative illustration of (conventional) frame-based versus
(emerging) event-based visual information representation.

Despite the significant differences between neuromorphic
vision data and conventional frame-based images, particu-
larly in terms of the type and spatio-temporal characteristics
of the visual information they represent, numerous algorithms
have been recently developed to reconstruct images and
videos from neuromorphic vision data, e.g., [7], [8]; this is
largely because it allows existing image and video processing
applications, typically designed to take image-based inputs,
to use neuromorphic vision data. Either way, neuromorphic
vision data are already successfully used in different tasks,
including object tracking [9], [10], object recognition [11],
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[12], high-speed motion estimation [13], [14], HDR image
reconstruction [15], [16], simultaneous localization and map-
ping (SLAM) [17], [18], among others.
Neuromorphic vision sensors achieve high temporal res-

olution, typically in the order of µs, which is equivalent
to a high framerate (in the order of MHz) in conventional
(frame-based) image sensors. Hence, depending on the appli-
cation scenario and, consequently, on the scene dynamics
complexity, the amount of raw data generated by the neu-
romorphic vision sensors may be substantial. The output
data of neuromorphic vision sensors based on a differen-
tial sampling model (i.e., event cameras) tend to be sparse
in the spatial dimension, as only pixels corresponding to
moving/illumination changing areas trigger events, while
exhibiting high temporal correlation. As for neuromorphic
vision sensors based on an integral sampling model (i.e.,
spike cameras), the output data also exhibit high temporal cor-
relation but are typically denser than the event camera output
data in the spatial dimension, as pixels corresponding to both
static andmoving areas may fire spikes. Therefore, regardless
of the sampling model, highly efficient neuromorphic visual
data coding solutions are very much needed, especially con-
sidering the limited transmission and storage resources of the
main applications of neuromorphic (particularly event-based)
vision, such as embedded systems.

In the last few years, several (almost two tens) neuro-
morphic visual data coding (NVDC) solutions have been
proposed, mainly driven by the growing availability of this
type of cameras and the advantages they offer to scenarios
where the conventional frame-based image cameras strug-
gle to perform well; it is worth noting that, although some
neuromorphic vision cameras may carry an inertial measure-
ment unit (IMU), no coding solution for this type of data
is reviewed in this paper as it has also not been found in
the relevant NVDC literature. Nevertheless, a comparison
of their performances is still a rather difficult task since
the reported performance results have been obtained most
of the times under different test conditions (even the eval-
uation methodologies are sometimes different) and there is
no public software available to obtain comparable results.
While some NVDC solutions target a real-time processing
scenario, where low latency and low complexity in the encod-
ing/decoding process are critical requirements, other NVDC
solutions target scenarios of data storage or streaming for
later processing, where complexity and latency requirements
are relaxed in favor of high compression ratios. While the
coding process in the former scenario may occur after data
acquisition by the camera, in the latter scenarios the cod-
ing process can be performed by an application processor
after some initial transmission. In any case, coding is always
needed. Event rate can reach tens or hundreds of millions
of events per second and, without coding, storage systems
would quickly become overwhelmed and real-time streaming
over bandwidth-constrained networks, such as wireless or
IoT networks, would be impractical. Moreover, by reducing
the data volume, coding also enables faster data transfer and

processing, and reduces storage costs, especially for large
datasets needed in AI applications or benchmarking, among
other advantages.

Acknowledging the practical importance of developing
efficient NVDC solutions, JPEG has recently launched an
exploration activity on event-based vision, denominated
JPEG XE [19]. The main goal of JPEG XE is to ‘‘cre-
ate and develop a standard to represent such events in an
efficient way allowing interoperability between sensing, stor-
age, and processing, targeting machine vision applications’’
[19]. To achieve this goal, JPEG XE is currently focused
on defining the use cases and requirements for potential
standardization of the coding of events [20].

In this context, this paper first proposes a meaningful
classification taxonomy for NVDC solutions that allows to
identify and abstract their differences, commonalities, and
relationships. Guided by this classification taxonomy, a large
set of relevant NVDC solutions available in the literature is
then reviewed; for a comprehensive overview of the NVDC
field, both event-based and spike-based NDVC solutions will
be considered. This paper does not purposely include any
performance evaluation based on experimental results since
its target is conceptual and algorithmic; in fact, it may still
be early to derive final quantitative conclusions on the best
NVDC coding approaches, considering the lack of technical
maturity of most of these coding solutions, still requiring
additional research. Therefore, the main objective of this
paper is not to propose a novel NVDC solution, nor to provide
a comparative performance evaluation of NVDC solutions,
but rather to organize and classify a technical area that has
received many contributions in recent years. This type of
paper is essential to gather a systematic, high-level, and more
abstract view of the field to further launch solid and consistent
advancements in this emerging technical area.

With this purpose in mind, the rest of this paper is orga-
nized as follows: Section II will propose a classification
taxonomy for the many NVDC solutions available in the
literature, while Section III will provide an exhaustive review
of the NVDC solutions available in the literature driven by
the proposed taxonomy. Section IV will present an overview
of the datasets used in the available NVDC literature, while
Section V will present an overview of the performance eval-
uation metrics and relevant anchors used for benchmarking
also in the available NVDC literature. Section VI will present
some final remarks and, finally, Section VII will present some
relevant challenges associated with NVDC, that emerged
from the exhaustive literature reviewing.

II. NVDC: PROPOSING A CLASSIFICATION TAXONOMY
The increasing popularity of neuromorphic vision sensors
and, consequently, the increasing availability of neuromor-
phic vision content, has motivated the development of many
coding solutions. Since multiple technical approaches have
been adopted for the NVDC solutions available in the
literature, it is essential to identify their main commonali-
ties, differences, and relationships, thus providing a better
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understanding of the full neuromorphic vision data coding
landscape and promising future research and standardiza-
tion directions. In this context, this section first proposes a
meaningful classification taxonomy and will after exercise
it by referencing and classifying the many NVDC solutions
found in the literature according to the proposed taxonomy;
Section III will then go one step further by reviewing those
solutions with a level of detail that allows to understand the
involved key concepts and designs, although naturally not as
detailed as the corresponding referenced papers. In the fol-
lowing sub-sections, the proposed classification dimensions
for the taxonomy will be proposed first. After, the classes
for each taxonomy classification dimension will be proposed.
The classification dimensions and the classes within each
dimension have been defined based on the exhaustive review-
ing of (almost) two tens of NVDC solutions available in the
literature in order a robust taxonomy could be defined [21],
[22], [23], [24], [25], [26], [27], [28], [29], [30], [31], [32],
[33], [34], [35], [36], [37], [38], [39]; this list of references is
also an useful contribution of this paper.

A. TAXONOMY CLASSIFICATION DIMENSIONS
This section presents and defines the classification dimen-
sions for the taxonomy proposed for NVDC solutions. After
an exhaustive study of the NVDC solutions available in the
literature [21], [22], [23], [24], [25], [26], [27], [28], [29],
[30], [31], [32], [33], [34], [35], [36], [37], [38], [39], it was
concluded that the most appropriate taxonomy classification
dimensions are:

1) Raw Data Type: Refers to the type of (raw) elementary
information that is asynchronously outputted by each
sensor pixel, e.g., an event or spike, and that is targeted
by coding; the raw data type is intimately linked to
the neuromorphic vision sensor type and its visual data
acquisition model.

2) Fidelity: Refers to the fidelity with which the data
are coded. Depending on the application domain, the
data to be coded, hereafter referred to as raw input
data, may correspond to the sensor output data or to
the output data of an (optional) pre-processing module,
placed in between the sensor and the (NVD) encoder.
The pre-processing module may involve data filtering
or data sampling, and might be used, for instance,
to remove noise data from the sensor output data
sequence or to control the amount of sensor output data
to be effectively coded (i.e., fed to the NVD encoder).
Since this (optional) pre-processing step takes place out
of the encoder module, it is not directly related to the
coding process and, thus, it is out of the scope of the
proposed taxonomy (i.e., no taxonomy dimension is
associated to it).

3) Data Structure: Refers to the way the raw input
data sequence, i.e., sequence of elements of a spe-
cific raw data type at the NVD encoder input,
is arranged/transformed to be then coded while exploit-

ing the available spatial and temporal redundancies;
depending on the adopted fidelity, this may involve data
partitioning, temporal aggregation, data sampling, and
data conversion.

4) Basic Coding Unit: Refers to the basic processing
entity in which the structured data are further divided
for coding purposes.

5) Components: Refers to the specific constituent, i.e.,
basic, elements of the raw data type in the structured
data to be directly coded; depending on the raw data
type, the components may be the basic elements of
the ordinary raw data type representation (introduced
in Section I), e.g., the polarity, or of an alternative
representation with basic elements obtained from the
ordinary raw data type representation during data struc-
turing, e.g., the time interval.

6) Components Coding Approach: Refers to the way in
which the components of the structured data are coded
to reach a more compact neuromorphic visual data
coded representation, e.g., independently or jointly.

7) Prediction: Refers to the way the component-wise spa-
tial and temporal correlations in the basic processing
entity of the structured data are exploited to create a
lower energy signal, the so-called residue.

8) Transform:Refers to theway the remaining correlation
in the component-wise residue signal is exploited to
reach a more compact energy representation, usually in
some type of frequency domain. A key issue related to
the Transform dimension is that the impact of transform
on the performance of NVDC solutions is a poorly
understood domain (only 2 out of 19 coding solutions
reviewed use transform); this might be a possible area
of future research investment.

9) Quantization: Refers to the way the remaining cor-
relation in the component-wise residue signal or the
transform coefficients is exploited to create a lower
energy signal, the so-called quantized signal. A key
issue related to the Quantization dimension is that the
impact of quantization on the performance of NVDC
solutions is also a poorly understood domain (only 4 out
of 19 coding solutions reviewed use quantization); this
might be also a possible area of future research invest-
ment, notably if lossy coding is targeted, as quantiza-
tion induces some loss or distortion in the decoded data.

Using these dimensions, eachNVDC solutionmay be char-
acterized by a taxonomy classification path connecting a set
of classes along these dimensions, thus allowing to identify
commonalities through the overlapping of the corresponding
classification paths.

B. CLASSES FOR EACH CLASSIFICATION DIMENSION
Using the proposed taxonomy classification dimensions, it is
now necessary to define the classes within each classification
dimension, naturally based on the NVDC solutions already
available in the literature. After exhaustive analysis, the fol-
lowing classes are proposed for each dimension:
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1) Raw Data Type – In terms of raw data type, the follow-
ing classes are proposed:
a) Event: Asynchronous and independent response

of a vision sensor pixel to a detected time-domain
(incoming) light intensity relative change (i.e.,
above a preset threshold), so-called temporal con-
trast, at a precise time instant. It is typically
represented by the 4-tuple ⟨x, y, t , p⟩ contain-
ing the location (x, y) within the sensor (pixel
coordinates) where the event was triggered, the
timestamp t at which the event was triggered, and
the polarity p of the event indicating weather a
light intensity increase (p = 1) or decrease (p =

–1) occurred.
b) Spike: Asynchronous and independent response

of a vision sensor pixel to an accumulated time-
domain (incoming) light intensity exceeding a
preset threshold at a precise time instant. It is
typically represented by the 3-tuple ⟨x, y, f ⟩ con-
taining the location (x, y) within the sensor (pixel
coordinates) where the spike was fired, and the
spike firing state f indicating whether a spike has
been fired (f = 1) or not (f = 0). For the spike
camera currently reported in the literature (the
Vidar camera), the spike firing state of every pixel
is read periodically, with a fixed time interval
T , forming a (binary) spike frame; as the time
passes by, spike frames are formed one after the
other and the temporal information associated to
the spike occurrences within each spike frame
is inherently embedded in the respective spike
frame index (kT). For this reason, no time infor-
mation is explicitly included in the spike (3-tuple)
representation.

2) Fidelity – In terms of fidelity, the following classes are
proposed:
a) Lossless: Codecs keeping the original (i.e., raw

input) data fidelity, meaning that the decoded and
original data are mathematically equal (up to a
certain precision, if required).

b) Lossy: Codecs not keeping the original (i.e., raw
input) data fidelity, typically to increase the com-
pression factor; high fidelity may still be achieved
with the appropriate coding parameters configu-
ration.

3) Data Structure – In terms of data structure (DS), the
following classes are proposed:
a) 3D Point Set: The raw input data sequence, corre-

sponding to a sequence of elements of a specific
raw data type at the NVD encoder input, are
arranged as a set of points in the 3-dimensional
(3D) space with the temporal dimension playing
the role of a geometric dimension, notably the Z
coordinate axis; thus, each 3D point is defined
with Cartesian coordinates (x, y, z) and possibly

an attribute, e.g., the polarity p. This data structure
is typically spatially (x, y) sparse and preserves
the original information (i.e., number of elements
and values) of all raw data type components, with-
out involving any data temporal aggregation or
sampling. The 3D Point Set data structure is suit-
able to be coded with standard-based point cloud
geometry coding solutions, e.g., G-PCC [41],
or with coding schemes involving point-based
geometry processing.

b) Cuboid Grid: The raw input data sequence, corre-
sponding to a sequence of elements of a specific
raw data type at the NVD encoder input, are
arranged in a space-time grid of cuboids (or cubes
if all its 3 dimensions are equal); each cuboid
represents a local spatio-temporal neighborhood
of elements of a specific raw data type. While
the grid resolution in the spatial dimensions (X
and Y ) is typically regular, meaning that the
cuboids’ length on those dimensions is the same
over the entire sensor resolution, in the temporal
dimension the grid resolution may be regular or
irregular, depending on the criterion used to split
the sensor data on that dimension; for example,
the temporal grid resolution can be determined
from external information, e.g., the time interval
between RGB images in a DAVIS-like camera,
or by task-related motion requirements. This data
structure tends to be spatially denser than the 3D
Point Set data structure, as the distribution of the
elements (events/spikes) in the spatial dimensions
tends to concentrate into small areas (such as a
cuboid spatial area) corresponding, for instance,
to objects’ movement; naturally, the elements dis-
tribution varies with the scene dynamics. The
Cuboid Grid data structure also preserves the
original information (i.e., number of elements and
values) of all raw data type components, without
involving any data temporal aggregation or sam-
pling. This data structure is suitable to be coded
with solutions based on spatio-temporal volumes
such as cuboids; this type of data structure allows
exploiting spatial correlation between spatially
neighboring (i.e., in the X and Y dimensions)
cuboids and the temporal correlation within a
cuboid and between co-located (in the spatial
dimensions) temporally adjacent cuboids.

c) 1D Array of Elements: The raw input data
sequence, corresponding to a sequence of ele-
ments of a specific raw data type at the NVD
encoder input, are arranged as a 1-dimensional
(1D) array, i.e., as a single sequence, of ele-
ments that may or may not be ordered in some
component(s), e.g., elements may be ordered by
the triggering/firing time. This data structure is
dense, in the sense that each array position refers
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to a triggering/firing output, and preserves the
original information (i.e., number of elements and
values) of all raw data type components without
involving any data temporal aggregation or sam-
pling. The 1D Array of Elements data structure
is suitable to be coded with element-wise coding
solutions or coding schemes that exploit compo-
nents’ correlation through prediction or entropy
coding strategies within small portions of the 1D
array, i.e., chunks, with fixed or arbitrary size.

d) 3D Array of Frames: The raw input data
sequence, corresponding to a sequence of ele-
ments of a specific raw data type at the NVD
encoder input, are converted into a 3-dimensional
array of frames, e.g., by pixel-wise polarity accu-
mulation or pixel-wise counting the elements of a
specific raw data type (e.g., events) over a given
time interval or by simply sampling elements over
time; a frame is basically a 2D array, with the sen-
sor spatial resolution, whose entry (pixel) values
are typically obtained from event temporal aggre-
gation at each pixel location (e.g., a pixel may
correspond to an accumulated polarity value or a
histogram count). The 3D Array of Frames data
structure is typically denser (than the 3D Point
Set data structure) and usually does not preserve
the original information (i.e., number of elements
and values) of some raw data type components,
as it typically involves data temporal aggregation
and polarity accumulation. This data structure is
suitable to be coded with standard video coding
solutions, e.g., HEVC, or with coding solutions
inspired on the intra and inter coding modes
adopted in the standard image/video coding solu-
tions or even with lookup table (LUT)-based
coding schemes; this type of data structure allows
exploiting spatial correlation (within a frame)
and/or correlation between temporally adjacent
frames in the 3D array.

4) Basic Coding Unit – In terms of basic coding unit
(BCU), the following classes are proposed:

a) Single Element: Basic processing entity of struc-
tured data corresponding to an individual element
of a given raw data type. This basic coding unit is
characteristic of element-by-element processing
methods and allows spatio-temporal correlation
exploitation, although it might not be that effi-
cient due to the small support region for corre-
lation exploitation (1 element only).

b) Chunk: Basic processing entity of structured data
corresponding to a group of NC elements of a
given raw data type, i.e., a chunk. The chunk
size NC may be fixed or adjusted dynamically
using, for instance, a criterion associated to the
triggering time instant. This basic coding unit

may potentiate high spatio-temporal correlation
exploitation depending on the criterion used to
define the elements belonging to a chunk (and
the chunk size), which impacts on the similar-
ities between neighboring elements within and
between chunks.

c) Polyhedron: Basic processing entity of struc-
tured data corresponding to a 3D shape with flat
polygonal faces, straight edges, and sharp ver-
tices, containing elements of a given raw data.
A cuboid, i.e., a NX × NY × NT (3D) volume
of elements, is a particular case of this basic
coding unit, which corresponds to a polyhedron
with six quadrilateral (flat) faces; NX and NY
stand for the volume length in the spatial dimen-
sions X and Y , respectively, and NT stands for
the volume length in the temporal dimension.
In a cuboid, NX and NY are usually set to the
same value, which in theory can vary between 1
(corresponding to a sensor pixel) and the sen-
sor height and width, respectively, while NT
is typically adjusted dynamically using a crite-
rion associated to possible (task-related) motion
requirements. Depending on the scene dynamics,
other 3D shape polyhedrons (than cuboids) may
allow a finer adaptation to the motion character-
istics, by aggregating in it neighboring elements
(of a given raw data) with similar motion char-
acteristics; in this case, a motion plane-based
representation of the polyhedron, characterized
by a more or less complex set of parameters (e.g.,
represented as a set of the 3D shape’s vertices and
edges), can be for instance adopted. This basic
coding unit is suitable for a fine adaptation to
the motion characteristics and allows exploring
the spatial or spatio-temporal correlation between
spatially neighboring polyhedrons and the tempo-
ral correlation within or between co-located (in
the spatial dimensions) temporally adjacent 3D
polyhedrons.

d) Group of Frames: Basic processing entity of
structured data corresponding to a set, i.e.,
a group, of NI frames, typically contiguous in
time, where a frame typically corresponds to a 2D
array (NX×NY ) of values of a specific component
(e.g., polarity), accumulated over a certain time
interval 1 or sampled over the temporal dimen-
sion; NX and NY correspond to the frame height
and width, which are typically equal to the sensor
height and width, respectively. A single frame is
a particular case of this basic coding unit, which
corresponds to NI equal to one. In case NI = 1,
this basic coding unit may allow exploiting spatial
correlation (i.e., within a frame) with standard-
based image/video coding solutions, e.g., HEVC
Intra. When NI > 1, this basic coding unit
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may potentiate the spatio-temporal correlation
exploitation (within and between frames of a
group of frames), facilitating the adoption of cod-
ing schemes according to the components to be
coded, e.g., different coding schemes for location
and polarity.

5) Components – In terms of components, the following
classes are proposed:

a) Location: Information to be coded includes loca-
tion data, i.e., 2D coordinates (x, y) identifying
the position in the sensor where an asynchronous
sensor output of a specific raw data type was
triggered; this information is typically present in
the representation of both event and spike raw data
types.

b) Timestamp: Information to be coded includes
time data, i.e., temporal information identifying
when an asynchronous sensor output of a specific
raw data type was triggered at a given pixel loca-
tion; this information is present in the event raw
data type representation only.

c) Polarity: Information to be coded includes polar-
ity data, i.e., 1-bit code indicating the variation
sign of the temporal contrast (corresponding to a
light intensity increase or decrease) associated to
an asynchronous sensor output of a specific raw
data type triggered at a given pixel location; this
information is present in the event raw data type
representation only.

d) Time Interval: Information to be coded includes
time interval data, i.e., information indicating
the time interval between two consecutive occur-
rences of asynchronous outputs of the sensor
triggered at a given pixel location; this informa-
tion is present in the spike and event raw data type
representation. Contrary to the previous compo-
nent classes, the Time Interval class corresponds
to information that is not directly recorded by the
sensor; the time interval information is converted
from the sequence of spike firing states (‘1’/’0’
values) or timestamps outputted by each sensor
pixel along time. It is worth noting that, for the
spike raw data type, the time interval data, known
as inter-spike interval (ISI) data, are typically
characterized by higher spatio-temporal correla-
tion than the (recorded) spike firing state data,
which makes them preferable for coding pur-
poses [23]; this is, in fact, the reason why (all)
the spike-based NVDC solutions available in the
literature code the time interval data (i.e., ISI data)
instead of the data recorded by the sensor (spike
firing states).

6) Components Coding Approach – In terms of com-
ponents coding approach, the following classes are
proposed:

a) Independent: The components data, associated to
a specific raw data type representation, are coded
separately, meaning that each component is inde-
pendently encoded/decoded from the remaining
one(s); this may involve using different cod-
ing strategies to code each component, possibly
with knowledge on some coding information of
other component, e.g., its elements’ coding order.
Depending on the adopted data structure, com-
ponent embedding in the data structure itself or
on the BCU may be involved; this means that the
embedded components are not directly coded.

b) Joint: The components data, associated to a spe-
cific raw data type representation, are coded
jointly, meaning that all the components are
encoded/decoded jointly; this typically involves
using a single coding strategy to code all the
components at once. Depending on the adopted
data structure, component embedding in the data
structure itself or on the BCU may be involved;
this means that the embedded components are not
directly coded.

7) Prediction – In terms of prediction, the following
classes are proposed:

a) None: No prediction is applied at all.
b) Intra: The basic processing unit of the structured

data is coded while exploiting the correlation
among its elements only; this is called Intra pre-
diction since the correlation is exploited within a
single basic processing unit. This prediction class
may involve exploitation of temporal correlation
only or both spatial and temporal correlation, typ-
ically depending on whether the basic processing
unit spans over temporal dimension only (corre-
sponding to a sequence of elements of a given
pixel) or over both spatial and temporal dimen-
sions (corresponding to sequences of elements
of pixels in a spatial neighborhood). It may also
involve the definition of different Intra coding
modes, which are adaptively selected for differ-
ent parts of the content depending on the spatial
distribution of the elements.

c) Inter: The basic processing unit of the structured
data is coded while exploiting the correlation
between basic processing units in some spatio-
temporal neighborhood, considering motion; this
is called Inter prediction as, taking motion into
account, previous encoded basic processing units
may be used as reference to the current basic
processing unit coding. This prediction class may
involve exploitation of temporal correlation only
(in this case between spatially co-located neigh-
boring basic processing units) or both spatial
and temporal correlation depending on whether
motion in a spatio-temporal neighborhood is
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considered or not. It may also involve the defi-
nition of different Inter coding modes, which are
adaptively selected for different parts of the con-
tent depending on the spatio-temporal distribution
of the elements.

d) Hybrid: The basic processing unit of the
structured data is coded while exploiting the
correlation among its elements and between ele-
ments belonging to basic processing units in
some spatio-temporal neighborhood; this is called
hybrid prediction and may involve the definition
of (Intra and Inter) codingmodes, which are adap-
tively selected for different parts of the content.

8) Transform – In terms of transform, the following
classes are proposed:

a) None: No transform is applied at all.
b) Block-based: A transform is applied to some

appropriate signal or residual signal, structured
as a regular block; this includes for example the
discrete cosine transform (DCT). The transform
may be fixed or hand-crafted (e.g., DCT), adap-
tive (e.g., Karhunen–Loève Transform - KLT),
or learned (e.g., deep learning-based).

9) Quantization – In terms of quantization, the following
classes are proposed:

a) None: No quantization is applied at all.
b) Uniform: A quantization is applied to some

appropriate signal or residual signal where the
quantization levels are uniformly spaced.

c) Non-Uniform: A quantization is applied to some
appropriate signal or residual signal where the
quantization levels are unequally spaced.

An overview of the proposed classification taxonomy is
shown in FIGURE II; note that the arrows simply intend to
highlight example connection paths between classes along
the nine dimensions. Because the Raw Data Type dimension
is a strong dividing factor, the next section will provide a
comprehensive review of the NVDC solutions available in the
literature guided by the proposed taxonomy’s Raw Data Type
dimension, to better understand the involved key concepts
and designs in NVDC, both within and between classes of
the Raw Data Type dimension.

C. NVDC LITERATURE OVERVIEW
To experience and appreciate the power of the proposed
classification taxonomy, this section offers a summary table
where the NVDC references available in the literature are
classified according to the proposed taxonomy, see TABLE 1;
this table allows identifying related NVDC solutions with
respect to one or more taxonomy dimensions. Since the refer-
ences are chronologically ordered, it is easy to see the NVDC
technical approaches evolution along time. For example, it is
interesting to note that event is the most adopted Raw Data
Type class while lossy is the most adopted Fidelity class.

FIGURE 2. Overview of the proposed NVDC classification taxonomy.

Moreover, the first learning-based NVDC solution has just
emerged in 2022, adopting a lossy coding approach.

For each entry in TABLE 1, whenever there is only one
class in the ‘Pred.’, ‘Transf.’ and/or ‘Quant.’ columns for
more than one class in the ‘Compon.’ column, this means
that all components listed in ‘Compon.’ are predicted, trans-
formed and/or quantized in the same way; for each entry in
TABLE 1, whenever there is more than one class in the ‘Com-
pon.’/‘Pred.’/‘Quant.’ dimensions, they are separated by ‘&’.
In TABLE 1, ‘/’ is used to identify different variants proposed
for a specific classification dimension in each reference. The
symbol ‘?’ in TABLE 1 means that not enough information
is provided in the reference to clarify the respective classifi-
cation.

From TABLE 1, the following conclusions can be drawn:
• The vastmajority of theNVDC solutions currently avail-
able in the literature, including the most recent ones,
are event-based (17 out of 19). This seems a natu-
ral consequence of the significantly higher number of
event-based cameras commercially available [4] when
compared to the single spike-based camera currently
reported in the literature (the Vidar camera [5]).

• Most of the NVDC solutions are lossy (12 out of 19),
although some of those solutions (e.g., [25], [28], [30],
[34], [37] and [38]) are classified as lossy not because
they employ lossy coding tools but rather because they
perform lossy operations, such as temporal quantization
and/or polarity accumulation, during the data structuring
of the raw input data sequence; while temporal quan-
tization induces some precision loss in the timestamp
component of the raw input data sequence, polarity
accumulation induces some precision loss in the polar-
ity component of the raw input data sequence. While
lossless NVDC seems to be more appropriate for typ-
ical NVDC use cases, lossy coding with adjustable
CR/quality tradeoff may also be adequate/advantageous
for certain application scenarios, e.g., on-demand slow
motion, for further reducing the events coding data rate
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TABLE 1. NVDC solutions in the literature classified according to the proposed taxonomy.
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TABLE 1. (Continued.) NVDC solutions in the literature classified according to the proposed taxonomy.

(compared to lossless coding); please refer to [20] for
more details on possible event-based vision use cases
and requirements under study on the recent JPEG explo-
ration activity on event-based vision (JPEG XE [19]).
Moreover, it is worth noting that lossy coding has always
been targeted in spike-based NVDC solutions.

• In the event-based NVDC solutions, there is a trend
towards reducing the number of event’s components to
be directly coded by embedding one (or more) compo-
nent(s), e.g., timestamp or polarity, in the way the events
are arranged to be coded (i.e., in the data structure);
a similar trend is observed in the spike-based NVDC
solutions, as the location and temporal information are
somehow embedded in the BCU processing order and in
the spike firing states readout time by the spike camera,
respectively. The embedding approach seems to allow
some event/spike data rate saving in comparison to cod-
ing all the components of the event/spike representation.

• Some of the most recent event-based NVDC solutions
jointly encode the event’s components, in opposition
to the independent coding approach followed by the
former NVDC solutions. While the joint approach may
allow some event data rate saving (in comparison
to the components independent coding), it may also
increase the coding solution complexity, as it becomes
a multi-variate coding approach.

• In terms of the data structure/basic coding unit dimen-
sions, cuboid grid/polyhedron (notably cuboid-like
polyhedron) seem to have been the trend in the earlier
NVDC solutions, but for the more recent ones (pub-
lished since 2022) the trend is not that clear. A possible

reason for this may be the willingness of exploiting,
in the neuromorphic vision data context, new visual
data coding strategies that meanwhile emerged (e.g., G-
PCC and deep learning-based coding), and that, to be
effective, require the adoption of more appropriate
data structures/basic coding units (such as 3D point
set/polyhedron and 3D array of frames/group of frames).

• Finally, regarding the coding tools addressed by the
proposed taxonomy, it is possible to conclude from
TABLE 1 that while (some sort of) prediction is used
by most of the NVDC solutions available (10 out of 19),
the same does not apply to transform, which is only used
in 2 out 19 NVDC solutions (1 event-based solution and
1 spike-based solution). In terms of quantization, it is
interesting to notice that, from the 4 NVDC solutions
where the quantization tool is employed, only 2 of them
are event-based and, from these 2, both adopt a uniform
quantization; regarding the spike-based NVDC solu-
tions, both use the quantization tool, with a non-uniform
spacing of the quantization levels. Moreover, from the
small set of NVDC solutions adopting the transform and
quantization coding tools, it is possible to infer that the
impact of those coding tools on the NVDC solutions’
performance is a poorly understood domain; these might
be two possible areas of future research.

III. NVDC: REVIEWING GUIDED BY THE TAXONOMY’S
RAW DATA TYPE DIMENSION
The NVDC area has received many contributions in the
recent years and is considered critical for the future of
visual data coding solutions. In the following, an exhaustive
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list of the neuromorphic vision data coding (NVDC) solu-
tions available in the literature is presented together with a
description of each solution; the solutions’ comprehensive
review is guided by the proposed taxonomy’s Raw Data Type
dimension and follows the chronological order within each
class of the Raw Data Type dimension. Some performance
results are also reported for each NVDC solution to bet-
ter understand its strengths and weaknesses. However, it is
important to stress that the performance results reported in
sections III-A and III-B are, in most cases, not directly com-
parable between different coding solutions, as they have been
obtained under different test conditions, e.g., different evalu-
ating event/spike sequences sets (even when the same dataset
is used) and/or different duration of the coded sequences.
Sometimes even different evaluation methodologies are used
in the coding solutions performance assessment; while some
solutions evaluate their performances with respect to the raw
input data, other solutions may evaluate its performance with
respect to aggregated data obtained from the raw input data
structuring process, typically involving operations that lead
to a loss of information in the raw input data. An earlier
performance comparison of lossless coding strategies, includ-
ing the NVDC solution in [21] and some generic lossless
data compression strategies adapted to NVDC, can be found
in [42]. For an overview on the datasets and performance eval-
uation metrics/benchmarks adopted by the NVDC solutions
reviewed in this section, please refer to sections IV and V,
respectively.

A. EVENT-BASED NVDC SCHEMES
1) SPIKE CODING FOR DYNAMIC VISION SENSORS [21]
In 2018, Bi et al. proposed a cube-based coding framework
to losslessly code data generated from a DVS event cam-
era (consisting of location, polarity, and timestamp) [21].
Although [21] uses the term spike data to refer to the DVS
camera output data, in most NVDC literature (notably the
most recent one) event data is the term commonly used to
refer to the output data produced by an event camera, such
as the DVS event camera (see Section I); for this reason, the
term event has been adopted in this solution description.
In the proposed coding framework, which was the first

made available to code event data, the sensor event sequence
(outputted by the sensor pixel array) is first organized as a
set of points in the 3D (space-time) volume, with the pixel
location (x, y) and the timestamp t defining the 3D coordinate
axes X , Y and Z , respectively, and the polarity being the
value attributed to each 3D point. An adaptive macro-cube
partitioning of the sensor event sequence in the temporal
(i.e., Z ) dimension is then performed based on a binary-
tree structure, targeting to obtain approximately the same
number of events within each macro-cube; a macro-cube is
a cube of event data in the 3D space whose size in X and Y
dimensions corresponds to the sensor pixel array full spatial
resolution and the size in Z (temporal dimension) results from
binary-tree partitioning. Each macro-cube is further split into

32×32 event-cubes along the spatial dimensions (X , Y ), con-
stituting the basic unit for encoding and, thus, to exploit the
(events) spatio-temporal redundancies. It is worth recalling
that, in the related literature, events’ temporal redundancy
is related to the similarity between time intervals between
consecutive events at a given pixel, typically resulting from a
constant changing rate of luminance intensity (such as linear
increase or decrease). Events’ spatial redundancy is related to
the similarity between events triggered by adjacent (sensor)
pixels, typically resulting from the fact that adjacent pixels
tend to simultaneously receive almost the same luminance
intensities.

The proposed event-cube encoding procedure consists of
separate encoding of (event) location, timestamp, and polarity
data. The event location encoding process involves evaluating
two intra-cube prediction modes designed to tackle different
event spatial distributions, the so-called address-prior mode
and time-prior mode, and selecting the one leading to the
lowest rate cost; while the address-prior mode is designed for
spatially sparse cubes, resulting from events scattering over
the entire spatial resolution, the time-prior mode is designed
for spatially dense cubes, resulting from a high events con-
centration over neighboring pixels. As intra-cube prediction
modes, the address-prior mode and the time-prior mode only
exploit the events correlation within an event-cube.

Thus, in the address-prior mode, the events within the cube
to be encoded are first accumulated and stored in the so-called
location histogram, a 2D array where each entry represents
the number of events that were triggered in the correspond-
ing pixel location within the cube; the location histogram
is complemented with a location histogram binary map, a
2D array where each entry indicates whether events were
triggered or not in the corresponding pixel location. Then,
the location histogram and the location histogram binary map
are (separately) fed into a context-based adaptive arithmetic
entropy encoder, generating the address-prior mode-based
location coding bitstream. For each pixel within the cube, the
events’ timestamps are differentially encoded with respect to
the previous (event) timestamp, followed by context-based
adaptive arithmetic entropy encoding, which generates the
address-prior mode-based timestamp coding bitstream.

In the time-prior mode, it is first determined the so-called
center point, i.e., the event pixel location within the cube that
minimizes the spatial distance (in x and y pixel coordinates)
to all the other event pixel locations within the cube to be
encoded. Next, it is computed the displacement (1x, 1y)
between the (x, y) coordinates of every event (within the cube)
and the center point coordinates (xc, yc) previously deter-
mined; the set of (1x, 1y) displacements computed is then
fed into a context-based adaptive arithmetic entropy encoder,
generating the time-prior mode-based location coding bit-
stream. The events’ timestamps (within the cube) are also
differentially encoded with respect to the previous (event)
timestamp (the coding order of the event timestamp follows
the event location coding order), followed by context-based
adaptive arithmetic entropy encoding, which generates the
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time-prior mode-based timestamp coding bitstream. The ele-
mentary encoded bitstreams associated to the (event) location
and timestamp coding result then from the corresponding
bitstreams generated by the intra-cube prediction mode with
the lowest rate (considering both the location and timestamp
rates).

As far as the event polarity coding is concerned, it is
context-based adaptive arithmetic entropy encoded (with a
coding order following the event location coding order of
the intra-cube prediction mode with the lowest rate), generat-
ing the polarity coding bitstream. The elementary encoded
bitstreams resulting from (event) location, timestamp and
polarity coding are then multiplexed to generate the event
coding bitstream.

Experimental results on the PKU-DVS event dataset, pro-
posed in [21] for the event data coding algorithm evaluation,
show an average compression ratio (over the whole dataset)
of 19.52 with respect to the raw event data size (where each
event is represented by 64 bits); hereafter, the compression
ratio with respect to the raw event data size will be simply
referred to as compression ratio (CR). Compared to the LZ77
and LZMA benchmarks, two Lempel-Ziv-based (generic)
lossless coding algorithms, the proposed coding framework
achieves an average CR 4.43× and 1.54× higher, respec-
tively.

2) SPIKE CODING FOR DYNAMIC VISION SENSOR IN
INTELLIGENT DRIVING [22]
In 2019, Dong et al. extended the lossless event data cod-
ing solution in [21], by proposing an adaptive octree-based
partitioning of the sensor event sequence into the so-called
coding tree cubes in both spatial (XY axes) and temporal (Z
axis) dimensions, to code event data generated from a DAVIS
event camera [22]; DAVIS (Dynamic and Active Pixel Vision
Sensor) [43] is an hybrid sensor that concurrently outputs
event data (through a DVS sensor) and conventional intensity
images/frames (through an active pixel sensor – APS).

In the proposed coding framework, each 64 × 64 ×

32768 coding tree cube can be further adaptively divided
along the spatial and temporal dimensions into smaller cubes,
called coding cubes, using an octree structure, targeting to
obtain approximately the same number of events within each
smaller cube (i.e., coding cube); the coding cube constitutes,
thus, the basic coding unit of the proposed coding solution.

The proposed coding cube encoding procedure consists of
separate encoding of (event) location, timestamp, and polarity
data. Similarly to [21], two intra-cube prediction modes, i.e.,
the address-prior mode and the time-prior mode, are evalu-
ated and the one leading to the lowest rate cost is selected as
the best prediction mode. However, in [22], the evaluation of
each intra-cube prediction mode includes not only the (event)
location and timestamp data coding but also the polarity data
coding; the (event) location, timestamp, and polarity coding
strategies adopted in [22] are similar to the ones described in
the previous solution ([21]). Thus, the intra-cube prediction

mode with the lowest sum of (event) location, timestamp,
and polarity rates is selected as the best prediction mode; the
elementary encoded bitstreams resulting from the location,
timestamp and polarity coding for the best prediction mode
are then multiplexed to generate the event coding bitstream.
Experimental results on the DDD17 dataset (only event

data considered) show that the proposed solution slightly out-
performs the lossless event coding solution in [21], achieving
an average CR (with respect to the raw event data size) of
2.65 whereas the event coding solution in [21] achieves an
average CR of 2.64. Compared to the LZ77 (Lempel-Ziv
compression algorithm) and LZMA (Lempel-Ziv-Markov
chain algorithm) lossless benchmarks, the proposed coding
framework achieves an average CR 1.78× and 1.24× higher,
respectively. An inter-cube prediction strategy, in which cod-
ing cubes previously encoded can be used as reference to
predict the current coding cube, was also proposed in [22] but
the coding performance achieved (average CR of 2.64) was
rather similar to the one attained using only the intra-cube
prediction strategy (average CR of 2.65).

3) SPIKE CODING: TOWARDS LOSSY COMPRESSION FOR
DYNAMIC VISION SENSOR [24]
Also in 2019, Fu et al. proposed the first lossy coding scheme
to code event data generated from a DVS event camera [24].
The proposed solution extends the lossless coding framework
in [22] to the lossy scenario by incorporating quantization
of the prediction residual data together with an optimized
inter-cube prediction and a new intra-cube prediction mode.
It is worth noting that the details on the proposed coding
scheme in [24] are scarce due to the paper length (1-page
paper).

Experimental results on the MNIST-DVS dataset show the
evolution of the average distortion and classification accuracy
with the CR, for the proposed coding solution only; no details
are given on how the CR, average distortion and classification
accuracy were computed.

4) TIME-AGGREGATION-BASED LOSSLESS VIDEO
ENCODING FOR NEUROMORPHIC VISION SENSOR
DATA [25]
In 2021, Khan et al. proposed the so-called Time-
Aggregation-based Lossless Video Encoding (TALVEN)
solution, a coding solution based on event aggregation in the
temporal dimension and conventional lossless video coding,
to code pseudo video sequences created from event data
generated from aDAVIS event camera (consisting of location,
polarity, and timestamp) [25].

The TALVEN solution starts by aggregating (i.e., accu-
mulating), over a fixed time interval called aggregation time
interval, the number of events triggered at each pixel location
according to their polarity, creating two polarity- based event
frames; a polarity-based event frame is, thus, a location his-
togram, i.e., a 2D array with the full sensor pixel array spatial
resolution representing, at each pixel location, the event count
for a given polarity in a fixed aggregation time interval.
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This process of event aggregation over a fixed time interval,
performed during the raw input data structuring, involves
(raw input) event timestamps quantization, i.e., a lossy opera-
tion where all the (continuous) raw input (event) timestamps
within the aggregation time interval are mapped to a single
timestamp value, typically with reduced bit representation;
event timestamps quantization induces, thus, some precision
loss in the timestamp component of the raw input event
sequence. Therefore, from the event coding pipeline point of
view, which includes structuring of the raw input data towards
subsequent coding (see Section II-A), the TALVEN solution
is a lossy coding scheme; the (raw input) event timestamps
quantization is, however, the only operation inducing loss of
information in the TALVEN solution.

The two polarity-based event frames created from event
aggregation are then concatenated side by side, creating a
(new) bigger frame called superframe, targeting to take the
most benefit of the conventional video coding techniques
and, thus, achieving higher compression gains. This (event
accumulation and polarity-based event frames concatenation)
process is repeated over thewhole duration of the sensor event
sequence (i.e., raw input event sequence) and the resulting
set of superframes, structured into a 3D array of superframes,
is then treated as a pseudo video sequence; the pseudo video
frames are not exactly conventional video frames, notably
in terms of its content (value stored in each pixel is not
an intensity value), hence the pseudo term. The pseudo
video sequence is then HEVC losslessly encoded, generating
the event coding bitstream; it is worth noting that, in the
TALVEN solution, the polarity information is embedded
within the video frame (each superframe concatenates both
polarity-based event frames side by side) while the quantized
timestamp information (for all the events in each video frame)
is embedded in the frame number field of the encoded video
sequence.

Experimental results on 10 (indoor and outdoor) event
sequences of the DAVIS 240C dataset (only event data con-
sidered) show higher coding performance for medium to
high aggregation time intervals compared to the event coding
solution in [22], achieving CRs up to 4× higher. Besides the
usual CR, between the raw event data size (in bits) and the
event coding bitstream size (in bits), [25] also reports results
on the CR between the raw (pseudo) video sequence size (in
bits) and the event coding bitstream (in bits), called video
encoder CR; the coding performance of the proposed solution
in terms of video encoder CR follows a similar trend to the
usual CR.

5) LOSSY EVENT COMPRESSION BASED ON
IMAGE-DERIVED QUAD TREES AND POISSON DISK
SAMPLING [27]
Also in 2021, Banerjee et al. proposed the so-called Pois-
son Disk Sampling-Lossy Event Compression (PDS-LEC),
a lossy coding solution based on Poisson disk sampling and
quad-tree segmentation of intensity images to code event

data generated from a DAVIS event camera (consisting of
location, polarity, and timestamp) [27]; please recall that the
DAVIS sensor [43] is an hybrid sensor that produces both
event data (through a DVS sensor) and conventional intensity
images (through an APS sensor). While the input of the pro-
posed coding framework includes both event data (location,
polarity, and timestamp) and RGB images, the work in [27]
is focused on the event data coding only; RGB images are
assumed to be coded in (some of) the experimental results
but there is no reference on the coding solution employed to
compress them.

In the PDS-LEC solution, a quad-tree structure is first
derived for the intensity frame at time instant t , It , through
dynamic programming (Viterbi algorithm), based on the
decoded frame at time instant t-1, Ît−1, targeting to guide
the coding process of the event data triggered between
time instants t-1 and t . Next, events triggered between time
instants t-1 and t are aggregated according to their polar-
ity and temporally quantized into 16 bins, creating (two)
polarity-based event cuboid grids; each (polarity-based)
event cuboid is a volume of event data in a 3D space-time
neighborhood and constitutes the basic coding unit of the
PDS-LEC solution.

The (polarity-based) event cuboids are then adaptively
sampled via Poisson disk sampling according to the priority
established by the quad-tree based segmentation map; the pri-
ority of a 2D spatial region within the 3D space-time volume
(of event data that have been triggered between time instants
t-1 and t) is inversely proportional to the corresponding block
size in the quad-tree based segmentation map. The higher
the region priority, the higher the importance of keeping the
respective events after sampling. Afterwards, the locations
(x, y) of the sampled events are differentially encoded fol-
lowed by Huffman encoding, generating the location coding
bitstream, while the polarity information of the sampled
events is run-length encoded followed by Huffman encoding,
generating the polarity coding bitstream. The elementary
encoded bitstreams resulting from (event) location and polar-
ity coding are then multiplexed to generate the event coding
bitstream.

Experimental results on the DAVIS 240C dataset show
higher compression performance, measured in terms of CR
versus aggregation time interval, compared to the lossless
and lossy event coding benchmark solutions in [22] and [25],
respectively, achieving CRs up to 6× higher; it is not clear
from [27], however, the precise conditions in which this
lossy-lossless comparison was performed. More recently, the
PDS-LEC solution has been adopted by the same authors for
object tracking in a communication system called host-chip
architecture [40]; in the proposed host-chip architecture, the
data acquisition on the chip (event and intensity images) is
driven by information transmitted by the host, an object track-
ing application, through a feedback channel. Experimental
results show the robustness of the proposed system when
compared to benchmark object tracking methods using DVS.
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6) LOSSLESS COMPRESSION OF EVENT CAMERA
FRAMES [28]
In 2022, Schiopu and Bilcu proposed a performance-oriented,
context-based image coding solution to code groups of event
frames generated from a DVS-like camera (consisting of
location, polarity, and timestamp), where the event location
information and the event polarity information are encoded
separately using different strategies [28].
In the proposed coding framework, the polarity of the

events that occurred at each (sensor) pixel location are first
accumulated (summed up) over a fixed time interval 1 and
the (polarity) sum’s sign {−1, 0, 1} is then stored in the
corresponding pixel location in a 2D array known as event
frame (EF); an EF has, thus, the full sensor pixel array spatial
resolution and represents, at each pixel location, the polarity
of an event that represents all the events triggered in the
accumulation time interval. Depending on the 1 value, the
process of event aggregation over a fixed time interval 1

with polarity accumulation, performed during the raw input
data structuring, may involve (raw input) event timestamps
quantization and polarity accumulation, two operations that
induce some precision loss in the timestamp and polarity
components of the raw input event sequence, respectively;
while in event timestamps quantization all the raw input
(event) timestamps within the aggregation time interval are
mapped to a single timestamp value, typically with reduced
bit representation, in polarity accumulation, all the raw input
(event) polarities within the aggregation time interval are
summed up and converted to a single (representative) polarity
value. In this context, from the event coding pipeline point
of view, which includes structuring of the raw input data
towards subsequent coding (see Section II-A), the proposed
framework [28] is a lossy/lossless coding scheme; the (raw
input) event timestamps quantization and polarity accumula-
tion are the two operations inducing loss of information in the
proposed coding framework.

The proposed process of event aggregation over a fixed
time interval with polarity accumulation is repeated over the
whole sensor event sequence duration and the resulting set of
(synchronous) EFs is then structured into a 3D array of EFs,
with each group of 8 (consecutive) EFs constituting the basic
coding unit of the proposed coding framework.

For coding purposes, each group of 8 (consecutive) EFs
is then represented by a pair of an event map image (EMI),
storing the spatial information, and a concatenated polarity
vector (CPV), storing the polarity information. The EMI is
further represented by: i) a (2D) binary map (BM), signaling
the pixel locations (x, y) where at least one event has occurred
in an EF; ii) the number of events per signaled position
in BM; and iii) the EF indices, indicating the positions in
the EF group of the EFs associated to the events previously
identified.

The BM is encoded in raster scan order using template con-
text modelling (TCM), where the context is computed using
the causal neighborhood of the pixel to be encoded. The num-
ber of events is encoded bitplane by bitplane, starting with the

least significant one in a 3-bitplane representation (maximum
number of events is 8), also using template context modelling;
the context for each bitplane is computed using the causal
neighborhood of the current bitplane and a template context
from the previously coded bitplane(s). The EF indices are
encoded using adaptive Markov modelling (AMM). As far as
the coding of polarity information is concerned, both AMM
and TCM are applied, and the final encoding strategy is the
one with the lowest estimated codelength. In the proposed
coding solution, the event coding bitstream results from mul-
tiplexing the elementary bitstreams resulting from EMI and
CPV encoding.

Experimental results on the DSEC dataset show that the
proposed solution achieves CRs up to 5.8 (with respect to
the raw event data size) for the time interval 1 = 10−6s.
Compared to the conventional lossless video/image cod-
ing solutions used as benchmarks, HEVC (High Efficiency
Video Coding), VVC (Versatile Video Coding), CALIC
(Context-based Adaptive Lossless Image Coding) and FLIF
(Free Lossless Image Format), [28] reports, for 1 = 10−6s,
CR improvements of 198.01%, 238.94%, 125.04%, and
84.92%, respectively. Note that, when the 3D array of EFs
is generated from the raw input (sensor) event sequence
considering the time interval 1 = 10−6s (i.e., framerate of
106 frames per second (fps)), all events of the raw input
event sequence having the same timestamp are aggregated
in one EF; this means that, for 1 = 10−6s, there is no (raw
input) event timestamps quantization nor polarity accumula-
tion, i.e., it corresponds to a lossless scenario. For the other
time intervals1 (i.e., framerates) evaluated, notably 5.555ms
(180 fps), 1ms (103fps) and 0.1ms (104fps), [28] reports aver-
age coding performance improvements of 70.68%, 58.06%
and 20.66% compared to HEVC, VVC and FLIF, respec-
tively. This coding performance is measured in terms of a
so-called aggregation CR (see Section V), i.e., a CR relative
to the size (in bits) of an event (temporal) aggregation based
raw input data structure, in this case the 3D array of EFs
(where each EF pixel is represented by 2 bits, as 3 symbols
are possible {−1, 0, 1}); please recall that the 3D array of
EFs results from a process of event aggregation over a fixed
time interval 1 with polarity accumulation (as described in
the beginning of this section). It is worth noting that the input
to the conventional image/video coding solutions are (event)
images obtained by combining, through some mathematical
function, the information enclosed in each set of 5 consecu-
tive EFs (represented by 8-bit values), for improved coding
performance of those codecs (please refer to [28] for more
details).

7) SPATIAL-TEMPORAL DATA COMPRESSION OF DYNAMIC
VISION SENSOR OUTPUT WITH HIGH PIXEL-LEVEL SALIENCY
USING LOW-PRECISION SPARSE AUTOENCODER [29]
Also in 2022, Hasssan et al. proposed the first learning-based
lossy coding framework to code event frames created from
event data generated from DVS-like cameras (consisting of
location, polarity, and timestamp) [29].
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In the proposed framework, the sensor event sequence
(i.e., raw input event sequence) is first converted into (syn-
chronous) binary frames by sampling the (raw input) events
⟨x, y, p, t⟩ over the temporal dimension (timestamp t); how-
ever, this conversion process is not described in detail in [29].
The binary frames are then fed as input to the proposed
low-precision sparse convolutional autoencoder architecture,
where the encoder comprises 2 sparse convolutional layers
(each including a ReLU activation function) and 2 max pool-
ing layers, and the decoder includes 2 upsampling layers and
2 convolutional layers (each of which including also a ReLU
activation function). To reduce the amount of computation
and storage resources needed, low-precision 2-bit and 4-bit
convolution operations were implemented during the training
phase; full precision weights and activations of each con-
volution layer were passed to a quantization module before
performing convolution operations, thus compressing the full
precision weights and activations to 2-bit and 4-bit precision
levels, respectively. The sparse compressed representation
model (also known as latent space) is obtained by adding
a L1 norm sparsity penalty term to the loss function during
the training phase; the latent space corresponds to the event
coding bitstream of the proposed coding solution.

Autoencoder reconstructed images are then used for infer-
ence by a classification network and an object detection
network, both of which were independently trained on the
original, i.e., raw input, (DVS) event data. It is worth noting
that, contrary to the all the previously reviewed solutions,
the learning-based lossy coding framework proposed in [29]
was not evaluated standalone but in the context of specific
computer vision tasks, notably event-based classification and
object detection tasks. In the classification task, experimental
results on the datasets MNIST-DVS (generated by converting
the standard frame-basedMNIST dataset to events), DvsGes-
ture and Gen1 N-CARS show average CRs up to 29.1 with an
accuracy drop of 3.0%. In the object detection task, exper-
imental results on the Gen1 Automotive Detection dataset
show an average CR of 11.9 with a drop of 0.07 in mean
average precision.

8) LOW-COMPLEXITY LOSSLESS CODING FOR
MEMORY-EFFICIENT REPRESENTATION OF EVENT CAMERA
FRAMES [30]
Still in 2022, Schiopu and Bilcu proposed a low complexity
coding framework based on run-length and Elias coding to
code, in a memory efficient way, event frames created from
event data generated from a DVS-like camera (consisting
of location, polarity, and timestamp) while targeting to be
suitable for hardware implementation in low-cost event signal
processing chips [30].

In the proposed coding framework, the polarity of the
events triggered at each pixel location are first summed up
over a fixed time interval 1 and the polarity sum’s sign {−1,
0, 1} is then stored in the corresponding pixel location in
the so-called event frame (EF), as in [28]. Hence, similarly
to solution 6) reviewed above ( [28]), the coding framework

proposed in [30] is classified as lossy/lossless, since, depend-
ing on the1 value, it may involve raw input event timestamps
quantization and polarity accumulation, two operations that
lead to some precision loss in the timestamp and the polarity
components, respectively; these are, however, the only two
operations inducing loss of information in the proposed cod-
ing framework.

The proposed process of event aggregation over a fixed
time interval with polarity accumulation is repeated over the
whole sensor event sequence duration (or any pre-defined
time length) and the resulting (synchronous) EFs are then
grouped together forming the so-called EF volume (i.e., a
3D array of EFs). The EF volume serves as input for the
two proposed coding solutions: i) SAFE (Simple And Fast
lossless Event frame) codec, for fast coding of large sets
of EFs (thousands of EFs); and ii) MER (Memory-Efficient
Representation) codec, for a memory-efficient representation
of EFs while providing random access (RA) to any group of
pixels within the EF volume. The EF volume constitutes, thus,
the basic coding unit of the proposed coding solutions.

In the SAFE solution, the EF volume is further represented
by a (2D) binary map (BM), signaling the pixel locations
(x, y) where at least one event was triggered in time, and
a vector of concatenated time intervals (VCT), associated
to each pixel location signaled in BM. Next, the run-length
encoding scheme is adapted for coding both vectorized BM
and VCT, by counting the number of consecutive event/no-
event symbols in each, and then the Elias coding algorithm
is applied to code those set of counts, generating the event
coding bitstream.

In the MER solution, the EF volume (3D array of EFs) is
further divided into a set of 8 × 8 × 8 cubes, constituting
the RA units, which are then arranged as a set of vectors V.
As for the SAFE codec, the MER codec adapts the run-length
coding scheme and Elias coding to code the set of vectors V,
generating the RA event coding bitstream.

Experimental results on the DSEC dataset show that the
proposed MER solution achieves an average aggregation CR
(over the DSEC dataset) of 8.77 for 1 = 1ms (103fps), with
an average EF encoding speed of 9.07 ms per EF (ms/EF);
please recall that the aggregation CR is a CR with respect
to the size (in bits) of the (uncompressed) 3D array of EFs
(see Section V), where each EF pixel is represented by
2 bits (as 3 symbols are possible {−1, 0, 1}). The so-called
average EF encoding speed metric measures the (average)
time needed to encode one EF (see TABLE 4). Experimental
results also show that the MER solution provides fast and
low complexity RA to any 8 × 8 × 8 volume of pixels.
For the same time interval 1 = 1ms, the proposed SAFE
solution achieves an average aggregation CR of 9.77, with
an average EF encoding speed of 5.59 ms/EF. Compared
to the conventional lossless video/image coding solutions
used as benchmarks, HEVC, VVC and CALIC, [30] reports,
for the best performing proposed solution (SAFE), average
aggregation CR improvements of 34.57%, 24.62%, 35.51%,
and 84.92%, respectively, with average EF encoding speed
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reductions of 92.79%, 99.97%, and 65.21%, respectively. For
the same time interval 1 = 1ms, the conventional lossless
image coding solution FLIF outperforms the best performing
proposed solution (SAFE) with an average aggregation CR
5% higher but requires a higher average EF encoding speed
(26.10× higher). When the EF volume is generated from
the sensor event sequence considering a time interval 1 =

10−6s (106fps), an average CR of 4073 is reported for the
proposed SAFE solution, with an average EF encoding speed
of 59.86 ms/EF; similarly to the solution 6) reviewed above
([28]), there is no (raw input) event timestamps quantization
nor polarity accumulation for 1 = 10−6s (lossless scenario).
For1 = 10−6s, the proposed SAFE solution achieves average
CR gains (over the DSEC dataset) 2.37×, 2.70×, 1.47×, and
1.76× higher than the ones obtainedwith HEVC,VVC, FLIF,
and CALIC, respectively, while the average EF encoding
speeds are 0.77×, 0.07×, 0.64×, and 5× the ones required by
HEVC, VVC, FLIF, and CALIC, respectively. Please recall
that, as in [28], the input to the conventional image/video
coding solutions are (event) images obtained by combin-
ing, through some mathematical function, the information
enclosed in each set of 5 consecutive EFs (represented by 8-
bit values), for improved coding performance of those codecs
(please refer to [28] for more details).

9) LOSSLESS COMPRESSION OF NEUROMORPHIC VISION
SENSOR DATA BASED ON POINT CLOUD
REPRESENTATION [31]
In 2022, Martini et al. proposed a lossless coding solution
based on standard point cloud compression to code event data
generated from aDAVIS event camera (consisting of location,
polarity, and timestamp) [31].
In the proposed solution, the sensor event sequence is

organized as a set of points in 3D (space-time) volume, where
the pixel location (x, y) and the timestamp t correspond to the
3D coordinate axes X , Y and Z , respectively, and the polarity
is the value attributed to each 3D point, thus resembling a
3D point cloud representation. By splitting the events (of the
sensor event sequence) according to their polarity, two 3D
point clouds are obtained, one for each polarity.

Then, the standard Geometry-based Point Cloud Compres-
sion (G-PCC) codec [41] is applied to separately encode the
geometry information, i.e., the (x, y, t) triplet, of each 3D
(polarity-based) point cloud. G-PCC applies a transformation
to the input (x, y, t) coordinates and structures the resulting
data into voxelized octrees; the geometry is then losslessly
coded with an octree of appropriate depth. The two elemen-
tary encoded bitstreams resulting from applying G-PCC to
each 3D (polarity-based) point cloud are then multiplexed to
generate the event coding bitstream.
Experimental results on the DAVIS 240C dataset (only

event data considered) show higher compression perfor-
mance, measured in terms of CR, when compared to the
lossless benchmark solution in [21] and LZMA, a Lempel-
Ziv-based (generic) lossless coding algorithm; CRs up to 30%

and 49.4% higher are reported in [31] with respect to [21] and
LZMA, respectively.

10) LOW-COMPLEXITY LOSSLESS CODING OF
ASYNCHRONOUS EVENT SEQUENCES FOR LOW-POWER
CHIP INTEGRATION [32]
Also in 2022, Schiopu and Bilcu proposed the so-called Low-
complexity Lossless Compression of AsynchRonous Event
Sequence (LLC-ARES), a lossless coding framework based on
a novel event data representation, called same-timestamp rep-
resentation, and triple threshold-based range partition (TTP)
algorithm. The LLC-ARES framework codes event data
generated from a DVS-like camera (consisting of location,
polarity, and timestamp) while targeting to be suitable for
hardware implementation in low power event signal process-
ing chips [32].
In the proposed LLC-ARES framework, the sensor event

sequence is first divided into multiple sub-sequences, called
same-timestamp (ST) sub-sequences, each of which encloses
all the events (in the sensor event sequence) with the same
timestamp; each ST sub-sequence constitutes, thus, the basic
coding unit of the proposed solution.

Each ST sub-sequence is then ordered in increasing order
of the largest spatial coordinate and represented by four data
structures (DSs), i.e., two DSs containing the event spatial
(location) information (x and y coordinates, respectively), one
DS containing the polarity information and one DS contain-
ing the number of events that were triggered at the timestamp
of the ST sub-sequence (which corresponds to the ST sub-
sequence length). Each DS is subsequently encoded, where
binarization is employed to encode the polarity information
DS and the TTP algorithm is employed to predictively encode
the other three DSs.

The TTP algorithm uses a short-depth decision tree based
on a triple threshold to partitioning the range of the input
data (notably x and y coordinates of the events and the ST
sub-sequence length) into several smaller coding ranges dis-
tributed at concentric distances from the prediction, obtained
from the corresponding previously coded data. Afterwards,
each TTP input data value is represented by the binary repre-
sentation of the prediction error and the binary representation
of the decision tree structure, generating the corresponding
elementary data structure encoded bitstream; the event coding
bitstream is then formed by multiplexing the 4 elementary
encoded bitstreams resulting from encoding the 4 DSs used
to represent every ST sub-sequence.

In [32], it is also proposed a coding solution providing
random access (RA) functionality, called LLC-ARES-RA.
In LLC-ARES-RA, the sensor event sequence is first divided
intomultiple so-called packages of a given time length, which
constitute the RA units. Each package is then coded with the
LLC-ARES solution, and, to the resulting package encoded
bitstreams, it is added a header information bitstream result-
ing from employing the TTP algorithm to code the length of
package bitstreams.
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Experimental results on the DSEC dataset show that LLC-
ARES has, on average, higher compression performance,
measured in terms of CR, compared to the lossless bench-
mark solutions Bzip2 (lossless compression method based
on Burrows–Wheeler algorithm), LZMA, and ZLib, with
average CR improvements of 5.49%, 11.45%, and 35.57%,
respectively; for event sequences with high density (i.e., with
high number of events per second), Bzip2 and LZMAperform
better than LLC-ARES, with an average CR up to 1.2×
and 1.1× higher, respectively. As far as the LLC-ARES-RA
solution is concerned, experimental results show a perfor-
mance close to the LLC-ARES for the smallest (package)
time length considered (100µs).

11) FEATURE REPRESENTATION AND COMPRESSION
METHODS FOR EVENT-BASED DATA [33]
In 2023, Wang et al. proposed a conceptually different loss-
less coding approach, which is based on a character-like
representation of the event representation components (i.e.,
⟨x, y, p, t⟩), to code event data generated from a DAVIS event
camera (consisting of location, polarity, and timestamp) [33].

The proposed approach includes two coding methods,
namely theCharacteristic Parameter Jointed Coding (CPJC)
method and the ASCII Coding based on Bit Operation
(ACBO) method. Both methods are applied at the event level
of the sensor event sequence and are based on the conversion
of the ⟨x, y, p, t⟩ event representation into a sequence of
characters (i.e., character-like representation); the event con-
stitutes, thus, the basic coding unit of both proposed methods.

In the CPJC method, the event polarity, ‘0’ or ‘1’, is first
mapped to the special characters ‘-’ or ‘null’, respectively.
Then, the pixel coordinates x and y, i.e., the event location,
are converted to an alphabetic character (letter), represented
by 2 digits, followed by a numeric character, represented by
1 digit; the 3-digit representation of the x and y coordinates
results from the fact that, in a DAVIS346 sensor with 346 ×

260 spatial resolution, the maximum coordinate value, 346,
requires 3 digits to be represented. In the proposed x coordi-
nate conversion process, the numeric character corresponds to
the last (rightmost) digit of the x coordinate value while the
alphabetic character is obtained from a predefined dictionary,
which associates a 2-digit value (the two leftmost digits of x
coordinate value) to a letter; a similar conversion process is
applied to the y coordinate value. Finally, the event timestamp
t is first subtracted from the timestamp of the previously
triggered event and the difference is then represented by
a numeric character. After applying the CPJC method to
every event of the sensor event sequence, the corresponding
sequence of characters are multiplexed and Zip compression
is applied as entropy coding, generating the event coding
bitstream.

In the ACBO method, the pixel coordinate x (respec-
tively, y) of every event in the sensor event sequence is
first converted to a binary sequence, whose length is stored
in a structure for posterior entropy coding, and the binary
sequences associated to the x (respectively, y) coordinate

of all events in the sensor event sequence are then con-
catenated forming a long binary sequence. Next, the long
binary sequence is split into multiple 7-bit-long binary
sub-sequences, each of which is then converted to its cor-
responding decimal value for posterior ASCII character
representation according to a predefined fine-tuned ASCII
table; Zip compression is then applied to the corresponding
sequence of ASCII characters as entropy coding, generating
the event x (respectively, y) coordinate encoded bitstream.
The event timestamp t is converted to a numeric character,
as in the CPJC method, while the event polarity, ‘0’ and ‘1’,
is represented by the ‘-’ and ‘+’ characters, respectively;
the character representation of the polarity and timestamp
information of each event are concatenated, with the polar-
ity character acting as the separator between the timestamp
characters of two consecutive events. Zip compression is
then applied to the corresponding sequence of characters,
generating the event polarity-timestamp encoded bitstream.
The (full) event coding bitstream in the ACBOmethod results
from the multiplexing the elementary (event) x and y coordi-
nate encoded bitstreams with the polarity-timestamp encoded
bitstream.

Experimental results on four event sequences, acquired by
the authors with the DAVIS346 event camera, show that the
proposed coding methods have higher compression perfor-
mance, measured in terms of CR, compared to the lossless
benchmark solution in [21] and direct Zip coding of the ⟨x, y,
p, t⟩ event representation; CR improvements of 17.93% and
14.92% compared to [21] are reported for CPJC and ACBO
methods, respectively. It is also observed that, on average, the
CPJC method performs better than the ACBO method.

12) MEMORY-EFFICIENT FIXED-LENGTH REPRESENTATION
OF SYNCHRONOUS EVENT FRAMES FOR VERY-LOW-POWER
CHIP INTEGRATION [34]
Also in 2023, Schiopu and Bilcu proposed a low complexity
coding framework based on a memory-efficient fixed-length
representation using multi-level lookup tables (LUTs) to
code event frames created from event data generated from
a DVS-like camera (consisting of location, polarity, and
timestamp) while targeting to be suitable for hardware
implementation in very low power event signal processing
chips [34].

As in [28] and [30], the polarity of the events triggered
at each pixel location are first summed up over a fixed time
interval1 and the polarity sum’s sign {−1, 0, 1} is then stored
in the corresponding pixel location in the so-called event
frame (EF), which constitutes the basic coding unit of the
proposed framework. Hence, similarly to the solutions 6) and
8) reviewed above ([28] and [30], respectively), the coding
framework proposed in [34] is classified as lossy/lossless,
since, depending on the 1 value, it may involve event times-
tamp quantization and polarity accumulation, two processes
that lead to some precision loss; these are, however, the only
two operations inducing loss of information in the proposed
coding framework.
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Each EF is then partitioned in blocks of 32 × 32 pixels,
each of which is vectorized and further split into 205 subsets
of 5 ternary symbols {−1, 0, 1}. Each subset, i.e., 5 ternary
symbols, is then remapped into an 8-bit symbol through a
mathematical model and stored in a 205-symbol-long vector.
A fixed-length LUT-based encoding solution is then applied
to every 205-symbol-long vector, where a LUT-based rep-
resentation is used to store all the unique combinations of
205 symbols found in any 205-symbol-long vector (obtained
from the EF) and an index matrix is used to store in each
entry the position, i.e., index, in the LUT-based representation
from where the corresponding 205-symbol-long vector can
be extracted. The index matrix and the LUT-based represen-
tation are then encoded through binarization, generating the
event coding bitstream.

Experimental results on the DSEC dataset show that, for
time intervals1 = 1000µs and1 = 5555µs, the compression
performance of the proposed solution, measured in terms
of the aggregation CR (see Section V), approaches (but is
still below) the performance obtained with the conventional
lossless video/image coding benchmarks. For time intervals
1 = 1000µs (103fps) and1 = 5555µs (180 fps), [34] reports
average aggregation CR reductions up to 5.79%, 12.76%,
5.13%, and 33.27% compared to HEVC, VVC, CALIC,
and FLIF, respectively; compared to the event-based coding
benchmark in [30], an average aggregation CR reduction up
to 46.85% is reported for the same time intervals. For the
smaller time intervals, 1 = 1µs (106fps) and 1 = 100µs
(104fps), it is possible to observe significantly higher aver-
age aggregation CR performance reductions when compared
to the same benchmarks; [34] reports average aggregation
CR reductions up to 81.92%, 79.42%, 86.57%, 88.83%, and
94.40% compared to HEVC, VVC, CALIC, FLIF, and [30],
respectively. Please recall that, as in [28] and [30], the input
to the conventional image/video coding solutions are (event)
images obtained by combining, through some mathematical
function, the information enclosed in each group of 5 (con-
secutive) EFs (please refer to [28] for more details).

13) ENTROPY CODING-BASED LOSSLESS COMPRESSION
OF ASYNCHRONOUS EVENT SEQUENCES [35]
Still in 2023, Schiopu and Bilcu extended the low com-
plexity lossless coding framework in [32] (denominated
LLC-ARES), by modifying the TTP algorithm to employ
entropy coding based techniques, to code the same-timestamp
(ST) representation of event data generated from a DVS-like
sensor (consisting of location, polarity, and timestamp) [35].
In the proposed framework, named Entropy coding-based

Lossless Compression of ARES (ELC-ARES), after order-
ing a ST sub-sequence in increasing order of the largest
spatial coordinate, a triple threshold-based range partition
(TTP) algorithm employing a set of adaptive Markov mod-
els (AMMs) is applied to predictively encode the four data
structures (DSs) in which a ST sub-sequence is represented,
i.e., the two DSs containing the event spatial (location) infor-
mation (x and y coordinates, respectively), the DS containing

the polarity information and the DS containing the number
of events that were triggered at the timestamp of the ST
sub-sequence; the Laplace estimator is used to compute the
probability distribution for the TTP algorithm.

Different from the LLC-ARES solution [32], ELC-ARES
adopts also a new x-coordinate prediction strategy, where
the prediction of any element within the DS storing the x-
coordinate data corresponds to the x-coordinate associated to
the first event triggered at the ST sub-sequence timestamp; as
a consequence, ELC-ARES also adopts a new initialization
for the triple threshold needed for the TTP algorithm asso-
ciated to the x-coordinate. In addition to the 4 DSs coding
processes, a TTP algorithm similar to the one described above
(i.e., employing a set of AMMs) is also applied to encode the
decision trees resulting from the coding processes of all DSs
except the polarity related one; the event coding bitstream
is then formed by multiplexing the elementary bitstreams
resulting from encoding the 4 DSs and the decision trees.

Experimental results on the DSEC dataset show that
ELC-ARES has higher compression performance, measured
in terms of CR, compared to the lossless benchmark solu-
tions LLC-ARES, Bzip2, LZMA and ZLib, with average CR
improvements (over the DSEC dataset) of 21.40%, 28.03%,
35.27%, and 64.54% respectively. Experimental results also
show that ELC-ARES provides average event encoding speed
reductions of 21.41%, 91.10%, and 54.74% compared to
Bzip2, LZMA and ZLib, respectively, and the LLC-ARES
benchmark solution achieves an average event encoding
speed 46% lower than the proposed ELC-ARES solution; the
average event encoding speed metric measures the (average)
time needed to encode one event (see TABLE 4).

14) EVENT DATA STREAM COMPRESSION BASED ON POINT
CLOUD REPRESENTATION [36]
In 2023, Huang and Ebrahimi proposed a lossless coding
solution based on a point cloud representation to code event
data generated from a DAVIS event camera (consisting of
location, polarity, and timestamp) [36].

Similarly to [31], the sensor event sequence is organized
as a set of points in 3D (space-time) volume, where the
pixel location (x, y) and the timestamp t define the 3D
coordinate axes X , Y and Z , respectively, and the polarity
is the value attributed to each 3D point, thus resembling a
3D point cloud representation. In this context, the events of
the sensor event sequence are first aggregated, according to
their polarity, into multiple sets with a fixed number of events
each, generating multiple sets of two 3D point clouds (one
for each polarity), all with the same number of events. Next,
the (x, y, t) values of each point in each point cloud are
scaled to a range of values in the x, y, and t coordinates
appropriate for coding; in this case, timestamp t is multi-
plied by a temporal scaling factor of 1 × 106 and x and
y coordinates are multiplied by a special scaling factor of
1 × 103. Then, the standard Geometry-based Point Cloud
Compression (G-PCC) codec [41] is applied to encode the
geometry information (i.e., the (x, y, t) triplet) of every
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3D (polarity-based) point cloud separately. The elementary
encoded bitstreams resulting from applying G-PCC to every
3D (polarity-based) point cloud are then multiplexed to gen-
erate the event coding bitstream.

Experimental results on 8 (indoor and outdoor) event
sequences of the DAVIS 240C dataset (only event data con-
sidered) show higher compression performance, measured
in terms of CR, compared to the lossless benchmark solu-
tions [21], LZMA, Sprintz-Delta (compression algorithm for
Internet of Things devices characterized by low memory
consumption and low latency), Huffman coding, and SIMD-
BP128 (vectorized binary packing coding scheme), with
average CR improvements (over the 8 event sequences) of
22.2%, 36.2%, 100.4%, 161.4%, and 264.9% respectively.

15) A NOVEL APPROACH FOR NEUROMORPHIC VISION
DATA COMPRESSION BASED ON DEEP BELIEF
NETWORK [37]
Also in 2023, Khaidem et al. proposed a deep learning-based
coding framework to code pseudo video sequences created
from event data generated from a DAVIS event camera (con-
sisting of location, polarity, and timestamp) [37].
Similarly to [25], the proposed solution first accumulates,

over a fixed time interval, the number of events triggered
at each pixel location according to their polarity, generating
(two) polarity-based event frames; these frames have the full
sensor pixel array spatial resolution and represent, at each
pixel location, the event count for a given polarity, i.e., cor-
respond to location histograms. As for solution 4) reviewed
above ([25]), the coding framework proposed in [37] is
classified as lossy since it requires event timestamp quanti-
zation, an operation that induces some precision loss in the
timestamp component.

The two polarity-based event frames created from event
aggregation are then concatenated side by side creating a so-
called superframe, i.e., a frame with twice the sensor pixel
array horizontal resolution. This process is repeated over the
whole sensor event sequence duration and the resulting set
of superframes, structured into a 3D array of superframes,
is then treated as a pseudo video sequence, with each super-
frame constituting the basic coding unit of the proposed
framework.

The proposed superframe coding process starts by dividing
each superframe into 30 × 30 blocks and feeding them to
a deep belief network (DBN), comprising a 4-layer autoen-
coder, generating low-dimensional (20 × 1) latent features
vectors. The resulting latent features vectors are then encoded
using Huffman arithmetic coding, generating the correspond-
ing (superframe blocks) coding bitstreams. The elementary
bitstreams resulting from encoding all 30 × 30 blocks of all
superframes are finallymultiplexed, forming the event coding
bitstream.

Experimental results on 3 (indoor) sequences of the DAVIS
240C dataset (only event data considered) show significant
compression performance gains in general, measured in terms
of CR versus aggregation time interval, with respect to sev-

eral benchmark solutions, such as the event coding solutions
in [21] (lossless solution) and [25] (lossy solution), and
the generic lossless data compression algorithms Huffman
arithmetic coding, LZMA, LZ4, ZLib (Zeta Library), Zstd,
Brotli, and Snappy (fast integer compression algorithm). For
the largest time aggregation interval considered (30ms), the
proposed solution achieves an average CR (over the 3 event
sequences) 44.35× higher than the one achieved with the
lossless event coding solution in [21] and an average CR up
to 108.95× higher than the ones achieved with the generic
data compression algorithms; the average CR improvements
decrease as the time aggregation interval decreases. However,
it is worth mentioning that, according to [37], the DBN was
trained on blocks derived from the first 10 seconds of the
event sequences used for validation, which may bias the
results and somehow justify the high performance obtained.

16) LOSSLESS ENCODING OF TIME-AGGREGATED
NEUROMORPHIC VISION SENSOR DATA BASED ON
POINT-CLOUD COMPRESSION [38]
In 2024, Adhuran et al. extended the TALVEN solution
in [25], by proposing to use a standard point cloud compres-
sion scheme to code the time-aggregated event data created
from event data generated from a DAVIS event camera (con-
sisting of location, polarity, and timestamp) [38].

Similarly to [25], the proposed solution, so-called Time-
Aggregated Lossless Encoding of Events based on Point-
Cloud Compression (TALEN-PCC), first accumulates, over a
fixed time interval 1, the number of events triggered at each
pixel location according to their polarity. This process gen-
erates (two) polarity-based event matrices, each with the full
spatial resolution of the sensor’s pixel array. These matrices
correspond to location histograms, where each pixel location
reflects the event count for a given polarity. As for solution
4) reviewed above ([25]), the coding framework proposed
in [38] is classified as lossy since it requires event timestamp
quantization, an operation that induces some precision loss in
the timestamp component.

The two polarity-based event matrices created from event
aggregation are then (independently) raster scanned and the
matrices entries with non-zero event counts are arranged in
two so-called multivariate streams (one for each polarity),
where each non-zero matrix entry is represented by 4 vari-
ables: x, y,Event Count and k1; (x, y) corresponds to the pixel
location and k1 corresponds to the aggregation time interval
index in which the Event Count events occurred. This event
accumulation and multivariate streams creation process is
repeated over the whole duration of the sensor event sequence
(i.e., raw input event sequence). Each resulting multivariate
stream constitutes, thus, the basic coding unit of the proposed
solution.

Each resulting multivariate stream is organized as a 3D
point cloud, i.e., a set of points in 3D (space-time) volume,
where the pixel location (x, y) and the aggregation time inter-
val index k1 correspond to the 3D coordinate axes X , Y and
Z , respectively, and the Event Count is the attribute associated
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with each 3D point. Each 3D point cloud is then encoded
with the standard Geometry-based Point Cloud Compression
(G-PCC) codec [41]; while x, y, and k1 are encoded as geom-
etry information, the Event Count is encoded as attribute
information (i.e., reflectance input of the G-PCC codec).
The elementary encoded bitstreams (geometry and attribute)
resulting from applying G-PCC to every 3D point cloud (i.e.,
multivariate stream) are then multiplexed to generate the
event coding bitstream.

Experimental results on the DAVIS 240C dataset (only
event data considered), show higher coding performance,
measured in terms of CR, when compared to the TALVEN
solution in [25], achieving CRs up to 30% higher. Addi-
tionally, for medium to high aggregation time intervals, the
TALEN-PCC method significantly outperforms the lossless
event coding solution in [21].

17) FLOW-BASED VISUAL STREAM COMPRESSION FOR
EVENT CAMERAS [39]
Also in 2024, Stumpp et al. proposed the so-called flow-based
compression (FBC), a conceptually different lossy coding
approach, called stream-to-stream approach. Unlike the tradi-
tional coding approach adopted by all the remaining reviewed
NVDC solutions, where the encoder output is a coding bit-
stream, the proposed FBC solution encodes the sensor event
sequence into another (reconstructed) event sequence. The
FBC encoding operation is based on not transmitting future
events for some time period; instead, those future events are
predicted at the receiver using real-time optical flow estimates
computed and sent by the transmitter. The proposed FBC
approach is designed specifically for real-time compression
of event data generated from a DAVIS event camera (consist-
ing of location, polarity, and timestamp) [39].
The proposed FBC solution operates in two phases: a

sending phase followed by a predicting phase. During the
time period of the sending phase, event-wise optical flow
is first computed using the hARMS method [44]. Then, the
events are classified into flow events or no-flow events based
on the computed flow consistency. A flow event corresponds
to an event with consistent flow that can be reliably used to
perform prediction of future events at the receiver side. Flow
events are transmitted along with their computed optical flow
estimates. These flow estimates are used by the receiver to
predict future events, allowing the FBC to reduce the actual
number of events transmitted, thus leading to compression. A
no-flow event corresponds to an event with a non-consistent
flow. No-flow events are transmitted as they are, i.e., with
64 bits per event, without any additional compression.

During the time period of the predicting phase, the receiver
uses each flow event received during the previous sending
phase to predict the spatio-temporal location of future events;
those future events are not transmitted, as they are assumed to
be accurately predicted based on the consistency of the optical
flow computed at the transmitter. This prediction process
reduces the need to transmit every event, leading to com-

pression. Once the predicting phase is concluded for every
flow event received, the receiver combines the predicted
events with the no-flow events (received during the predicting
phase) generating the (FBC) reconstructed event sequence.
While the proposed FBC approach targets to be suitable for
real-time compression of event data, it can be combined with
other compression strategies for improved performance [39],
i.e., the (FBC) reconstructed event sequence can be further
compressed.

Experimental results on 4 event sequences (obtained from
the DAVIS 240C dataset, [45] and [46]) show an average
CR of 2.8, corresponding to an average event reduction of
68%, with a median temporal error of 0.48ms and an average
spatio-temporal event stream distance of 3.07, in a coding
framework where only the proposed FBC is used; please refer
to TABLE 4 for more details on the event reduction, temporal
error and spatio-temporal event stream distance. By applying
LZMA on top of the event sequence reconstructed by the
proposed FBC, experimental results show a CR improvement
of 3.72× with respect to the scenario where LZMA is not
used.

B. SPIKE-BASED NVDC SCHEMES
1) AN EFFICIENT CODING METHOD FOR SPIKE CAMERA
USING INTER-SPIKE INTERVALS [23]
In 2019, Dong et al. proposed the first lossy coding frame-
work to code time interval sequences created from spike data
generated from a spike camera (consisting of ‘ON’/‘OFF’,
i.e., binary, values) [23].
In the proposed framework, each spike train, i.e., each

sequence of spikes (‘ON’/‘OFF’ or ‘1’/’0’ values) outputted
by a single sensor pixel along time, is first converted into
a sequence of ‘waiting’ times between consecutive spikes,
i.e., relative latency of spikes, known as inter-spike intervals
(ISIs). Then, each ISI sequence is adaptively partitioned into
multiple sub-sequences (temporally), called segments, such
that adjacent segments are characterized by different ISIs
distributions and, thus, a more efficient exploitation of the
spatio-temporal redundancies can be achieved; each (ISI)
segment (from a sensor pixel) constitutes, thus, the basic cod-
ing unit of the proposed framework, with ISI corresponding
to the time interval component of the spike representation
targeted by coding (see Section II-B).

The proposed (ISI) segment encoding process involves
evaluating two intra-pixel prediction modes, the so-called
mean value mode (MVM) and forward mode (FM), and one
inter-pixel prediction mode, and selecting the mode lead-
ing to the lowest rate-distortion cost; considering that the
average pixel intensity is inversely proportional to the ISI,
an intensity-based distance between two spike trains is pro-
posed as distortion measure. While intra-pixel prediction
considers ISI data only from segments belonging to the pixel
to be encoded, inter-pixel prediction considers ISI data from
segments belonging to both the pixel to be encoded and to
neighboring pixels; the spike location component is somehow
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embedded in the order in which the basic coding units (each
segment from a sensor pixel) are scanned and, thus, it is not
directly coded.

The intra-pixel prediction mode MVM, designed to deal
with homogeneous segments, i.e., segments with similar ISI
values, involves the computation of the mean value of the
ISIs within a segment followed by the subtraction of that
mean value from all the segment ISI values, obtaining ISI
(prediction) residuals. The intra-pixel prediction mode FM,
designed to deal with non-homogeneous segments, i.e., seg-
ments with varying ISI values, involves motion estimation
and compensation in the temporal dimension only, i.e., con-
sidering previously coded segments from the same pixel
location only. After finding the reference (segment) candidate
that minimizes the intensity-based distance with respect to
the segment to be encoded, the (prediction) residuals of ISIs
are obtained and the associated motion vector is predicted
from the average of the motion vectors of previously coded
segments with the FM mode.

As far as the inter-pixel prediction mode is concerned,
it involves motion estimation and compensation in both tem-
poral and spatial dimensions, i.e., considering previously
coded segments from both the same pixel and neighboring
pixels in a causal spatio-temporal window. Thus, for each
reference (segment) candidate, the intensity-based distance
with respect to the segment to be encoded is computed and
the one with the lowest distance is selected as the prediction
segment; the (prediction) residuals of ISIs are then obtained
by subtracting the prediction segment from the segment to
be encoded. The spatio-temporal motion vector associated to
the prediction segment (with components in x, y, and t) is
then predicted from the average of the spatio-temporalmotion
vectors of previously coded segments from the same pixel and
from segments of 4 neighboring pixels (in a causal spatial
window). After the intra- and inter-pixel coding, the corre-
sponding prediction residuals are quantized (with a varying
quantization step size at each ISI) and context-based adaptive
entropy encoded, generating the spike coding bitstream.

Experimental results on the PKU-Spike dataset, proposed
in [23] for the spike data coding algorithm evaluation, show
compression performance, measured in terms of CR for
several quantization parameter (QP) values, with average
CR values (over the PKU-Spike dataset) ranging between
23.04 (for QP = 4) and 53.41 (for QP = 32). It is also
shown in [23] the PSNR and SSIM evolution with QP,
where each PSNR/SSIM value corresponds to the average
of 1000 PSNR/SSIM values computed for 1000 still intensity
images reconstructed from raw spike data and decoded spike
data.

2) HYBRID CODING OF SPATIOTEMPORAL SPIKE DATA FOR
A BIO-INSPIRED CAMERA [26]
In 2021, Zhu et al. extended the lossy coding framework
in [23], by incorporating an adaptive polyhedron partition-
ing, intra and inter polyhedron-based prediction, transform
and multi-layer quantization, to code time interval sequences

created from spike data generated from a spike camera (con-
sisting of ‘ON’/‘OFF’, i.e., binary, values) [26].
In the proposed framework, each spike train (sequence of

‘ON’/‘OFF’ spikes) outputted by a single sensor pixel along
time, is first converted into a sequence of inter-spike inter-
vals (ISIs), i.e., ‘waiting’ times between subsequent spikes.
Then, the ISI sequences associated to all the sensor pixels are
structured in an ISI volume and divided into macro cuboids,
i.e., cuboids with the full sensor pixel array spatial resolution
and a predefined time length. Each macro cuboid is in turn
partitioned into multiple spike cuboids, each of which corre-
sponding to 2×2 pixels in the spatial dimension, called pixel
group. The set of ISI sequences belonging to a pixel group
are further adaptively partitioned into multiple polyhedrons
according to the motion characteristics; the polyhedron con-
stitutes, thus, the basic coding unit of the proposed coding
framework.

Intra and Inter polyhedron-based prediction with spike-
rate and spike-time modes (4 prediction modes in total) are
then evaluated and the prediction mode leading to the lowest
rate-distortion cost is selected as the best prediction mode; an
intensity-based distance between two spike trains is proposed
as distortion measure. While the Intra polyhedron-based pre-
diction modes (Intra spike-rate and Intra spike-time) consider
only the spike data of the (2 × 2) pixel group in the poly-
hedron, the Inter polyhedron-based prediction modes (Inter
spike-rate and Inter spike-time) perform motion estimation
in both temporal and spatial dimensions, i.e., considering
previously coded polyhedrons of neighboring spike cuboids
that are nearest to the polyhedron to be coded.

The Intra spike-rate mode, designed to deal with simple
(regular) motion patterns or static regions, involves estimat-
ing the spike firing rate of each pixel in the (2 × 2) pixel
group in the polyhedron and use the central pixel firing rate
to predict the firing rates of the remaining pixels in the pixel
group. The Intra spike-time mode, designed to deal with
motion patterns slightly more complex than the ones targeted
by the Intra spike-rate mode, in addition to encode the firing
rate of each pixel in the polyhedron to be coded (as in the
previous Intra mode), it involves using the estimated spike
firing rate of each pixel in the (2×2) pixel group to reconstruct
the spike data and obtaining the prediction residuals of ISIs
by subtracting the reconstructed spike data from the one to be
encoded.

The Inter spike-rate mode, designed also to deal with
static regions, extends the Intra spike-rate prediction mode
by performing motion estimation and compensation in both
temporal and spatial dimensions, i.e., considering previously
coded polyhedrons from both the current spike cuboid and
from the 4 neighboring spike cuboids in a causal spatio-
temporal window. Thus, for each reference (polyhedron)
candidate, the intensity-based distance with respect to the
polyhedron to be encoded is computed and the one with
the lowest distance is selected as the reference polyhedron.
Next, the polyhedron to be encoded is predicted from the
spike firing rate of each pixel in the reference polyhedron,
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and the prediction residual of the spike firing rate is encoded
as described in the Intra spike-rate mode. The Inter spike-
time mode, designed to deal with complex motion patterns,
involves also motion estimation and compensation in both
temporal and spatial dimensions as in the Inter spike-rate
mode, but considers a wider spatio-temporal (cuboid) win-
dow where motion search is performed. Thus, for each
polyhedron to encode, the best match to the spike data
(ISIs) associated to each pixel in the (2 × 2) pixel group in
polyhedron is searched for in the spatio-temporal (cuboid)
window, by minimizing the sum of the intensity-based dis-
tances between every pixel spike data (ISIs) and the matching
spike data (ISIs), and the corresponding (2 × 2) spatio-
temporal motion vectors are obtained. The prediction residual
of ISIs is then obtained by subtracting from the ISIs of
each pixel in the (2 × 2) pixel group in the polyhedron to
encode the corresponding data from the best match found.
The spatio-temporal motion vectors are predicted from the
average of the spatio-temporal motion vectors of previously
Inter spike-time mode coded polyhedrons from the current
spike cuboid and from the 4 neighboring spike cuboids in a
causal spatio-temporal window.

While the prediction residuals of the spatio-temporal
motion vectors are lossless encoded, the prediction residu-
als of the spike firing rate and the prediction residuals of
the ISIs are (2D) DCT transformed. The DCT transformed
coefficients of the spike firing rate and ISI are then quan-
tized (with a varying quantization step size at each ISI) and
context-based adaptive entropy encoded, generating the spike
coding bitstream.

Experimental results on an extended version of the
PKU-Spike dataset presented in [23] show that the
polyhedron-based prediction provides better compression
performance, measured in terms of CR versus spike train
intensity-based distance, than the pixel segment-based pre-
diction proposed in [23]. Experimental results also include
compression performance, measured in terms of CR, for
several quantization parameter (QP) values, with average
CR values (over the PKU-Spike dataset) ranging between
91.46 with an average distortion of 8.56 (for QP = 4) and
840.06 with an average distortion of 33.88 (for QP = 60);
distortion corresponds to an intensity-based distance between
two spike trains (see TABLE 4). The compression perfor-
mance of the proposed coding framework is also compared
with H.264/AVC video coding (main profile) for 1000 still
intensity images reconstructed from the raw spike data and
decoded spike data, considering CR as a function of PSNR
and as a function of intensity-based distance between two
spike trains (proposed in [26]). From the small set of results
reported, H.264/AVC seems to be the better performing
coding solution (by a large margin) for high-speed sequences
and for lower CRs of static sequences, as far as the CR
versus PSNR comparison is concerned. When it comes to the
CR versus intensity-based distance comparison, the proposed
coding framework always outperforms H.264/AVC, due to

some information (e.g., firing time of spikes) loss occurring
when converting spike data into intensity images.

IV. NVDC: DATASETS OVERVIEW
In sections III and II-C, the NVDC solutions currently avail-
able in the literature have been reviewed and classified at
the light of the proposed taxonomy, respectively, to exercise
and demonstrate its potential. It is well known that, for a
fair and straightforward comparison of coding solutions per-
formances, it is essential to select meaningful and precise
test conditions, among which the test material (or datasets)
is a key part; the definition of meaningful and precise test
conditions (and performance evaluation metrics) is, in fact,
one of the short term goals of JPEG XE, a recent JPEG
exploration activity on event-based vision [19].
In this context, this section provides an overview, in the

form of a summary table (see TABLE 2), of the datasets used
to evaluate the performance of the currently available NVDC
solutions (reviewed in Section III). Besides associating to
each reference the respective dataset(s) used, TABLE 2 also
includes the datasets URLs, a brief description of the datasets
content and some specs on the camera/sensor used to acquire
the dataset (model, resolution and setup). The Raw Data
Type classification dimension (of the proposed taxonomy)
is also included in TABLE 2 for a faster identification of
the datasets used by NVDC solutions sharing the same type
of raw data at its input. As in Section III, the datasets pre-
sentation in TABLE 2 is grouped by the Raw Data Type
classification dimension and follows the chronological order
of the references in which they appear within each Raw Data
Type class. As for TABLE 1, ‘?’ indicates that not enough
information could be found in the reference to clarify the
respective entry. Moreover, the acronyms ‘ATIS’, ‘LCD’,
‘RTK’, ‘GPS’, ‘IMU’ in TABLE 2 stand for Asynchronous
Time-based Image Sensor, Liquid Crystal Display,Real-Time
Kinematic, Global Positioning System and Inertial Measure-
ment Unit, respectively, and ‘res.’ abbreviation stands for
resolution. Please recall that this section does not intent to
list all the publicly available neuromorphic vision datasets but
rather to identify the ones that have been used so far in the
performance assessment of the NVDC solutions available in
the literature (and reviewed in Section III).

TABLE 3 provides a concise and complementary view of
datasets listed in TABLE 2, summarizing the datasets main
characteristics while adding other relevant information of the
neuromorphic vision data to the coding scenario, such as
the event/spike sequences duration, number of events/spikes
per sequence, etc. As for the previous tables, the symbol
‘?’ in TABLE 3 indicates information not available in the
references or that is not enough to clarify the respective entry
while the symbol ‘-‘ indicates that the entry is not applica-
ble to the respective dataset. In TABLE 3, ‘APS’, ‘ADAS’,
SLAM, ‘cam’, ‘avg.’, ‘train.’ and ‘val.’ stand for Active Pixel
Sensor, Automatic Driver Assistance Systems, Simultaneous
Localization And Mapping, camera, average, training, and
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TABLE 2. Overview of the datasets used in currently available NVDC literature. Datasets URLs included in the table were accessed on May 2, 2024.
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TABLE 2. (Continued.) Overview of the datasets used in currently available NVDC literature. Datasets URLs included in the table were accessed on May 2,
2024.

validation, respectively. In ‘Sequence Duration’ and ‘Total #
Event/Spike per Sequence’ columns, ‘∼’ indicates approxi-
mately, while ‘a – b’ indicates minimum – maximum range of
values; in ‘Total # Event/Spike per Sequence’ column, ‘K’,
‘M’ and ‘G’ stand for kilo, mega, and giga, respectively.
From TABLE 2 and TABLE 3, the following conclusions

can be obtained:
• For the event Raw Data Type class, there are 2 event-
based datasets (from a total of 9) that have been more
often adopted in the event-based NVDC solutions per-
formance assessment (including the most recent ones):
the DAVIS 240 and the DSEC datasets; the DAVIS
240 dataset popularity seems, however, to be higher
among the research groups around the world working on
this emerging area (4 different research groups adopted
the DAVIS 240 dataset while only 1 adopted the DSEC
dataset). Besides being characterized by considerably
different spatial resolutions (240 × 180 for both event

data and monochrome intensity images versus 640 ×

480 for event data and 1440 × 1080 color intensity
images), these datasets also target different tasks, char-
acterized by significantly different scene dynamics that
translate into a different number of events per sequence;
the number of events per sequence in the DSEC dataset
is 16 times to 105 times higher than the one in the DAVIS
240 dataset. For the spike Raw Data Type class, a single
spike-based dataset (with 400 × 250 spatial resolution)
has been adopted in the performance assessment of both
spike-based NVDC solutions.

• All neuromorphic vision datasets result from the acqui-
sition (with a static and/or moving camera setup) of real-
world scenes, although through a variety of different
imaging systems since they address rather different tasks
(from pose estimation and objects/actions recognition,
detection, tracking and classification to simultaneous
localization and mapping).
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TABLE 3. Summary of the main neuromorphic vision data related characteristics of the datasets used in currently available NVDC literature. Hyperlinks to
datasets included in the table were accessed on May 2, 2024.
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• The ranges of the values of the number of events/spikes
per sequence tend to have a high amplitude. This may be
an indicator that the datasets cover some scene dynamics
variety (as the scene dynamics directly impacts on the
number of events/spikes generated by the neuromorphic
vision camera/sensor), which is important to obtain rep-
resentative and meaningful performance results.

• Four out of ten neuromorphic vision datasets also con-
tain grayscale or color (intensity) images captured along
with the neuromorphic vision data (in this case event
data) acquisition. However, this conventional type of
visual data (intensity images) has only been exploited
in the event data coding process by one NVDC solution,
the PDS-LEC solution [27].

• A few datasets, e.g., Gen1 NCARS and Gen1
Automotive Detection, appear to have already been
designed with the prospective development of deep
learning-based NVDC solutions in mind; those datasets
have already event sequences for training and validation
purposes.

In summary, the DAVIS 240 dataset appears to be the
most popular dataset among the research community when
it comes to the NVDC performance assessment. However,
its content (see TABLE 2) hardly reflects the content of the
NVDC main applications scenarios [20]. Thus, the definition
and adoption of reference neuromorphic vision dataset(s)
reflecting the content variety of the NVDCmain applications
scenarios (together with precise test conditions, performance
evaluation metrics, and benchmarking coding solutions) is,
therefore, of utmost importance to promote solid and con-
sistent advancements in this emerging technical area. Given
the recent JPEG exploration activity on event-based vision,
denominated JPEG XE [19], it may be foreseen that a refer-
ence neuromorphic vision dataset may be available in a near
future, as part of meaningful and precise test conditions and
performance evaluation metrics to assess the performance of
(new) NVDC solutions.

V. NVDC: PERFORMANCE EVALUATION METRICS AND
BENCHMARKING SOLUTIONS OVERVIEW
As mentioned in Section IV, the definition of precise per-
formance evaluation metrics and benchmarking (anchor)
solutions, together with meaningful test conditions, is of
upmost importance for a proper NVDC solutions perfor-
mance evaluation and comparison. In this context, this section
goes one step further (with respect to Section IV) and pro-
vides an overview, in the form of a summary table (see
TABLE 4), of the performance evaluation metrics and bench-
marking coding solutions used to assess the performance
of the currently available NVDC solutions (reviewed in
Section III). Due to the extensive list of references, TABLE 4
also includes details on the Raw Data Type and Fidelity
classification dimensions for better framing the performance
evaluation metrics and benchmarking coding solutions. As in
TABLE 2 and TABLE 3 (see Section IV), the NVDC refer-

ences are presented in chronological order within each Raw
Data Type class. In TABLE 4, ‘?’ means that not enough
information is provided in the reference to clarify the respec-
tive entry (as for the previous tables).

While the performance evaluation metrics are defined in
TABLE 4, there are two that are common to all references,
CR and aggregation CR; due to their importance, CR and
aggregation CR are fully defined in the following. The CR
corresponds to the ratio between the raw input data size in
bits, where each uncompressed event has typically 64 bits
long, i.e., 64 bits per event (bits/event), and the size in bits of
the target event coding bitstream (aka compressed bitstream
size); this CR is also known in the related literature as End-to-
End CR, e.g., [25]. The aggregation CR is defined as the ratio
between the size in bits of the event (temporal) aggregation
based raw input data structure, e.g., 3D array of EFs, and the
size in bits of the target event coding bitstream; the aggrega-
tion CR is also known in the related literature as video encoder
CR [25] or as Input-Output CR [37]. Hence, the aggregation
CR evaluates the NVDC solution performance with respect
to the event data effectively coded. Recall that (raw input)
data structuring based on event (temporal) aggregation may
involve event discarding from the raw input data sequence
(e.g., through event sampling [29]) and/or precision reduction
of some event components (e.g., through timestamp compo-
nent quantization and polarity accumulation [28]), as seen in
Section III; all these operations induce information loss in the
raw input data sequence, having, therefore, a direct impact on
the amount of information to be coded.

From TABLE 4, the following conclusions can be derived:

• For both event and spike Raw Data Type classes, the
CR is clearly the performance evaluation metric that
has been more often adopted in the NVDC solutions
performance assessment. However, for NVDC solutions
involving event (temporal) aggregation based raw input
data structures, it is common to find the aggregation
CR as a CR replacement (although it can also be found
as CR complement, e.g., in [25] and [37]). While a
reference representation (or format) of the encoder (raw)
input has been considered in all the CR computations
within the same Raw Data Type class (e.g., in the
event Raw Data Type class, the reference representation
considers 64 bits/event), the same does not apply to
the aggregation CR; the reference (i.e., uncompressed)
representation considered in the aggregation CR varies
with the type of event (temporal) aggregation performed
(e.g., event count versus polarity accumulation). Con-
sidering aggregation CR based performance evaluation
alone may make it difficult to compare NVDC solutions
performance, due to the lack of a reference representa-
tion (format).

• Spatial distortion metrics, such as PSNR and SSIM
of still intensity images reconstructed from decoded
spike/event data, have been also adopted, to measure
the loss induced by the NVDC solution, but only by

VOLUME 13, 2025 14651



C. Brites, J. Ascenso: Neuromorphic Vision Data Coding: Classifying and Reviewing the Literature

TABLE 4. Overview of the main performance evaluation metrics and benchmarking coding solutions used in currently available NVDC literature.
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TABLE 4. (Continued.) Overview of the main performance evaluation metrics and benchmarking coding solutions used in currently available NVDC
literature.
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TABLE 4. (Continued.) Overview of the main performance evaluation metrics and benchmarking coding solutions used in currently available NVDC
literature.

one event-based NVDC solution [27]; these spatial dis-
tortion metrics have been, however, adopted by all
spike-based NVDC solutions [23], [26] in their perfor-
mance assessment. Temporal error metrics have also
been proposed for the same event-/spike-based NDVC
solutions ([23], [26], and [27]) to measure the temporal
distortion.

• Average event/EF encoding/decoding speed may also
be found in the performance evaluation of some
event-based NVDC solutions, notably the ones that tar-
get to be suitable for hardware implementation in low
power/low cost event signal processing chips, e.g., [30],
[32], [34], and [35]; in those solutions, it is also possi-
ble to find other event related performance assessment
metrics such as the average event size and the average
encoded event rate. It is important to note that all these
metrics, except the average event size, are dependent on
the hardware platform used which makes comparison
rather difficult.

• In terms of benchmarking coding solutions, the situation
seems a bit more controlled, in the sense that most
of the NVDC solutions (within each Raw Data Type
class) shares at least one benchmarking coding solution;
still, the definition of a reference (anchor) benchmarking
coding solution would be a step forward towards making
the performance comparison task easier.

In summary, the main global conclusion that can be drawn
from TABLE 4 is that the lack of precise common test condi-
tions (and test material), among NVDC solutions sharing the
same Raw Data Type classification, is making direct compar-
ative performance analysis (based on experimental results) a
difficult task. It is, therefore, urgent to define common test
material and conditions (as well as benchmarking coding
solutions) to promote solid and consistent advancements in
the neuromorphic vision data coding area. As mentioned
in Section IV, given the recent JPEG exploration activity
on event-based vision (JPEG XE [19]), it may be foreseen
that meaningful and precise test conditions and performance
evaluation metrics (as well as anchor coding solutions) may

be released in a near future to assess the performance of (new)
NVDC solutions.

VI. CONCLUSION
Neuromorphic vision data coding is currently a very hot
research topic in multimedia representation and the recent
JPEG exploration activity on event-based vision, denom-
inated JPEG XE, is an acknowledgment of its practical
importance. Over the last 6 years, several NVDC solu-
tions have been developed, adopting rather different coding
approaches, both for the lossless and lossy scenarios. In this
challenging context, it is critical to understand the relation-
ships between these multiple NVDC solutions in order the
evolution of this technology can be faster and more solid.
With this goal in mind, this paper proposes a classification
taxonomy for NVDC solutions and reviews all the solutions
available in the literature at the time this paper was written.
This type of paper is essential to gather a systematic, high-
level, and more abstract view of the NVDC landscape, thus
allowing to better drive future research and standardization
developments in this emerging technical area.

VII. NVDC: CHALLENGES AHEAD
The literature overview presented in this paper shows that the
NVDC area is still in its infancy. From this overview, notably
from the conclusions drawn in sections II-C, IV, and V,
it is possible to observe that, while some work has already
been done, there are still several challenges associated with
NVDC that need to be addressed, notably towards creating
and developing a NVDC standard; this is, in fact, the main
goal of the recent exploration activity on event-based vision
launched by JPEG (JPEG XE [19]). Establishing a bridge
to those conclusions, this section identifies some relevant
challenges associated with NVDC, as follow:

• The lack of definition of meaningful and precise test
conditions and performance evaluation methodologies,
notably reflecting the NVD main applications and
requirements, is a relevant challenge in the NVDC area
(see sections IV and V). These test conditions and
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performance evaluation methodologies are essential to
enable a proper performance comparison ofNVDC solu-
tions and, thus, to allow drawing the NVD coding status
quo at any point in time, while fostering the development
of increasingly efficient coding tools/solutions.

• Differently from conventional cameras, where all sen-
sor pixels acquire visual information simultaneously at
regular time intervals, in event cameras each sensor
pixel asynchronously and independently triggers events
driven by the visual scene dynamics, which leads to
a variable data rate output. In fact, the data produced
by event sensors may be sparse or somewhat dense
depending on the frequency and location of lighting
conditions changes and/or on the type of motion in the
scene and/or on the event camera motion. Hence, for
an event-based codec to be efficient, it must be able to
accommodate different scene dynamics, that may result
in sensor event sequences with rather different densities
of events; standard-based point cloud coding solutions,
e.g., [41], are a good example of the importance of con-
sidering the data sparsity in their development. Hence,
this is certainly another relevant challenge in the NVDC
area.

• Neuromorphic vision sensors made available by differ-
ent manufacturers may have different sensitivities to
the scene dynamics and produce event data sequences
with different characteristics, e.g., in terms of spatial
resolution and/or noise. Additionally, the current trend
is for the new sensors to concurrently output event data
and conventional intensity images or frames [65]. This
may be a major challenge when it comes to the design
and development of a NVDC solution: to be agnostic to
the sensor characteristics, i.e., to have the same coding
efficiency independently of the sensor model or charac-
teristics.

• The current lack of a standardized NVD coding frame-
work, essential to guarantee interoperability between
different camera/sensor manufacturers and application
frameworks, might be an obstacle to a rapid adoption of
this type of cameras by the market and to the possible
deployment of some applications where this type of
visual information acquisition (sensing) may be prof-
itable. The design and development of a standardized
NVDC framework is, thus, another major challenge in
the NVDC area, very much needed towards a fast and
solid deployment of these technologies.

• The lack of visual subjective assessment methodologies
and objective quality metrics for lossy coding is another
challenge in the NVDC area. This challenge is partic-
ularly important when the output of the NVD-based
applications is to be consumed by humans, e.g., HDR
or high framerate video reconstruction. In this context,
objective quality metric(s) independent of the task to be
performed are essential to design and optimize future
lossy event-based coding solutions, especially if the aim

is to obtain a compressed representation suitable for
several machine vision tasks and also for human con-
sumption (after decoding).

Given the relevance and timeliness of the field, very exciting
times are coming in the neuromorphic vision data coding
arena.
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