Utilize este identificador para referenciar este registo: http://hdl.handle.net/10071/32900
Autoria: Hovakimyan, G.
Bravo, J. M.
Data: 2024
Título próprio: Evolving strategies in machine learning: A systematic review of concept drift detection
Título da revista: Information
Volume: 15
Número: 12
Referência bibliográfica: Hovakimyan, G., & Bravo, J. M. (2024). Evolving strategies in machine learning: A systematic review of concept drift detection. Information, 15(12), Article 786. https://doi.org/10.3390/info15120786
ISSN: 2078-2489
DOI (Digital Object Identifier): 10.3390/info15120786
Palavras-chave: Concept drift
Systematic review
Machine learning
Types of concept drift
Adaptive strategies
Science Direct API
IEEE API
Streaming data
Non-stationary environments
Evolving data streams
Resumo: In this comprehensive literature review, we rigorously adhere to the PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) guidelines for our process and reporting. This review employs an innovative method integrating the advanced natural language processing model T5 (Text-to-Text Transfer Transformer) to enhance the accuracy and efficiency of screening and data extraction processes. We assess strategies for handling the concept drift in machine learning using high-impact publications from notable databases that were made accessible via the IEEE and Science Direct APIs. The chronological analysis covering the past two decades provides a historical perspective on methodological advancements, recognizing their strengths and weaknesses through citation metrics and rankings. This review aims to trace the growth and evolution of concept drift mitigation strategies and to provide a valuable resource that guides future research and deepens our understanding of this rapidly changing field. Key findings highlight the effectiveness of diverse methodologies such as drift detection methods, window-based methods, unsupervised statistical methods, and neural network techniques. However, challenges remain, particularly with imbalanced data, computational efficiency, and the application of concept drift detection to non-tabular data like images. This review aims to trace the growth and evolution of concept drift mitigation strategies and provide a valuable resource that guides future research and deepens our understanding of this rapidly changing field.
Arbitragem científica: yes
Acesso: Acesso Aberto
Aparece nas coleções:BRU-RI - Artigos em revistas científicas internacionais com arbitragem científica

Ficheiros deste registo:
Ficheiro TamanhoFormato 
article_107308.pdf829,81 kBAdobe PDFVer/Abrir


FacebookTwitterDeliciousLinkedInDiggGoogle BookmarksMySpaceOrkut
Formato BibTex mendeley Endnote Logotipo do DeGóis Logotipo do Orcid 

Todos os registos no repositório estão protegidos por leis de copyright, com todos os direitos reservados.