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Abstract: In this comprehensive literature review, we rigorously adhere to the PRISMA (Preferred
Reporting Items for Systematic Reviews and Meta-Analyses) guidelines for our process and reporting.
This review employs an innovative method integrating the advanced natural language processing
model T5 (Text-to-Text Transfer Transformer) to enhance the accuracy and efficiency of screening and
data extraction processes. We assess strategies for handling the concept drift in machine learning
using high-impact publications from notable databases that were made accessible via the IEEE and
Science Direct APIs. The chronological analysis covering the past two decades provides a historical
perspective on methodological advancements, recognizing their strengths and weaknesses through
citation metrics and rankings. This review aims to trace the growth and evolution of concept drift
mitigation strategies and to provide a valuable resource that guides future research and deepens
our understanding of this rapidly changing field. Key findings highlight the effectiveness of diverse
methodologies such as drift detection methods, window-based methods, unsupervised statistical
methods, and neural network techniques. However, challenges remain, particularly with imbalanced
data, computational efficiency, and the application of concept drift detection to non-tabular data like
images. This review aims to trace the growth and evolution of concept drift mitigation strategies
and provide a valuable resource that guides future research and deepens our understanding of this
rapidly changing field.

Keywords: concept drift; systematic review; machine learning; types of concept drift; adaptive
strategies; Science Direct API; IEEE API; streaming data; non-stationary environments; evolving data
streams

1. Rationale for a Literature Review on Concept Drift Detection
1.1. Introduction

In the era of big data and continuous information streams, machine learning models are
widely employed to predict, classify, and analyze data in various domains, such as finance,
healthcare, the semiconductor industry, and customer service. These models typically
assume that the underlying data distribution remains static over time. However, this
assumption often fails because of concept drift, where changes in the statistical properties
of the target variable over time can degrade model performance. Concept drift research
focuses on methodologies for detecting, understanding, and adapting to these changes,
aiming to keep models accurate and reliable [1]. Traditional classifiers may struggle in such
environments, leading to poor performance [2] as the fundamental patterns in training data
evolve, causing model degradation and reduced accuracy over time [3].
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1.2. Importance of Concept Drift Detection

Concept drift, characterized by changes in data patterns over time, necessitates contin-
uous advancements in machine learning, especially in classification and regression tasks.
Designing models that can adapt to these changes is crucial for maintaining performance [4].
The relevance of this research is underscored by its direct impact on model accuracy and
decision-making processes.

The real-world implications of concept drift are evident across various sectors. For
example, in fraud detection, systems that monitor credit card transactions must adapt
to evolving customer behaviors and class imbalances, where genuine transactions vastly
outnumber fraudulent ones [5]. Financial time series in stock market prediction are prone
to concept drift, affecting forecasting accuracy as models become outdated [6].

In the semiconductor industry, monitoring the health of expensive equipment is critical.
Traditional methods like statistical process control (SPC) often fail to detect drifts early
enough for preventive action [7]. Similarly, healthcare monitoring involves tracking patient
data for the early detection of health condition changes, which is crucial during pandemics
like COVID-19 [8].

Other examples include recommendation systems in e-commerce, such as those used
by Amazon and Netflix, which must adapt to changing user preferences to remain ef-
fective [9], and image classification, where long-term deployments face shifting visual
environments and detecting concept drift is vital for maintaining model accuracy [10].

These examples highlight the pervasive and critical nature of concept drift across
multiple domains, emphasizing the need for continuous research and development in drift
detection methodologies.

1.3. Objectives of the Systematic Literature Review

The primary goal of this literature review is to illuminate the landscape of existing
methods employed in detecting concept drift. We aim to comprehensively categorize
the different detection techniques to understand the available tools. This effort involves
classifying methods based on criteria such as their underlying algorithms, application
domains, and performance metrics. Additionally, we endeavor to discern each method’s
strengths and weaknesses, identify the most effective strategies, and understand their
limitations. This analysis will guide practitioners in selecting appropriate methods.

Furthermore, we aim to pinpoint and analyze emerging trends and relatively less
explored topics for future research. We highlight these areas by focusing on promising
avenues that warrant further investigation. An integral element of our endeavor is to
update the information in existing literature review papers, serving as a timely and relevant
resource in this fast-paced domain. By achieving these objectives, we intend to contribute a
detailed and actionable synthesis of current knowledge in concept drift detection, facilitat-
ing further advancements in this field.

1.4. Scope of the Review

This review comprehensively examines various concept drift detection methods de-
veloped over the last two decades. It includes an in-depth analysis of statistical techniques,
machine learning approaches, and deep learning methods. We also discuss the datasets, and
their characteristics, widely used in concept drift detection. Furthermore, we evaluate the
frameworks and tools commonly employed in this field, providing a holistic understanding
of the landscape. This review aims to offer a thorough and up-to-date synthesis of the
methodologies and resources pertinent to concept drift detection by covering these areas.

1.5. Theoretical Foundations of Concept Drift

Concept drift can be understood through the lens of well-established theoretical
frameworks, including statistical learning theory, Bayesian inference, information theory,
and online learning theory. These frameworks provide a structured basis for understanding
the challenges and methodologies associated with drift detection.
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1. Statistical Learning Theory
Statistical learning theory underpins the generalization capability of machine learning

models. This theory assumes that the joint probability distribution P(X, Y) remains static
over time. However, concept drift violates this assumption, leading to degraded model
performance. When P(X) or P(Y|X) changes, the empirical risk minimization principle no
longer holds. Adaptive techniques are necessary to address these violations and restore
model performance [11].

2. Bayesian Inference Bayesian inference provides a probabilistic framework for
updating model beliefs as new data become available. Concept drift can be viewed as a
continuous process of updating prior distributions to adapt to evolving evidence [12].

Example: In financial forecasting, Bayesian models dynamically update predictions to
reflect changes in market conditions, ensuring more accurate risk assessments.

3. Information Theory Information-theoretic measures, such as entropy and Kullback–
Leibler (KL) divergence, are commonly used to quantify changes in data distributions [13].

Example: KL divergence can be used to compare the statistical properties of incoming
data streams with historical data, flagging significant deviations as potential drift.

4. Online Learning Theory
Online learning theory deals with incremental model updates as new data arrives.

This framework emphasizes balancing stability (preserving past knowledge) with plasticity
(adapting to new patterns) [14].

Example: Online learning models used in recommendation systems can adapt to
changing user preferences without requiring a full retraining of the system.

Practical Implications The integration of these theoretical frameworks into concept
drift detection methods enhances their adaptability and effectiveness:

• Statistical learning theory highlights the necessity of adaptive models to address
changing distributions.

• Bayesian inference provides a natural mechanism for gradual drift adaptation.
• Information-theoretic measures enable precise quantification of virtual drift.
• Change detection theory offers robust tools for identifying abrupt changes.
• Online learning frameworks ensure scalability and real-time adaptability.

By grounding concept drift detection in these foundational theories, researchers can
develop robust, adaptable models tailored to the complexities of dynamic environments.

2. Methodology

This literature review followed the PRISMA guidelines, ensuring a comprehensive
and unbiased approach. The methodological process was structured within four crucial
stages: the identification, screening, eligibility, and inclusion of studies.

2.1. Identification of Research

The initial research was conducted on two primary databases, IEEE and Science Direct,
utilizing their inherent Application Programming Interfaces (APIs) and Python SDK. This
led to the identification of 450 potential studies. Our search encompassed a comprehensive
overview of all relevant topics, with search queries including terms such as the following:

• Concept drift;
• Change detection adaptive environment;
• Evolving data streams;
• Unstable environment;
• Drift detection;
• Distribution change;
• Online learning;
• Non-stationary environments.

As we delved deeper into the literature during our review process, we found additional
key papers in the references sections of various articles. These relevant publications, curated
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from platforms like Springer, ResearchGate, and ACM Digital Library, contributed an extra
40 studies. Therefore, our review process expanded, ultimately examining 490 studies,
enhancing the comprehensiveness of our research base.

2.2. Inclusion and Exclusion Criteria

To ensure the relevance and quality of the collected literature, we established strict
inclusion and exclusion criteria. Papers to be included had to address concept drift detection
methodologies explicitly, provide empirical evaluations, and be published in reputable
journals or conferences. Conversely, we excluded papers that focused solely on general
machine learning concepts without specific relevance to concept drift detection.

From our initial pool of 490 studies, these criteria allowed us to sift down to 356 papers
that satisfied all conditions. To further underscore the quality of our chosen literature,
we conducted a citation analysis to identify the most influential articles on concept drift
detection. This was calculated as the number of citations divided by the number of years
since the article’s publication [15], as given by the following formula:

Adjusted Citation Rate =
Total Number of Citations

Years Since Publication
.

2.3. Screening Process

Upon gathering the articles, we utilized the sophisticated Text-to-Text Transfer Trans-
former (T5) model [16] to summarize abstracts for relevance. This innovative natural
language processing (NLP)-aided screening process was applied to the previously identi-
fied 356 studies. The aim was to identify articles that adequately met our inclusion criteria,
which required the works to be peer-reviewed, written in English, and published in either
research journals or conference proceedings. Each study needed to demonstrate appli-
cations or simulations related to concept drift and implement or evaluate techniques for
detecting concept drift. Furthermore, the outcomes of the studies had to involve measuring
or observing the effectiveness of the concept drift detection techniques. Adhering to these
criteria, we narrowed our pool to 254 articles. This rigorous screening process yielded a
final selection of articles that was efficient and accurate.

2.4. Eligibility Assessment

The eligibility assessment phase aimed to ensure that the included studies adhered
strictly to the pre-established quality and relevance criteria. From the 254 studies that
passed the initial screening, we conducted a meticulous full-text review of each paper to
ascertain its compliance with our inclusion criteria. This process emphasized the relevance
of each paper to our research questions, the scope of the investigation, and its alignment
with the objectives of this review.

During this phase, we delved deeper into the studies’ methods, results, and conclu-
sions. We performed this careful examination to include only high-quality and relevant
studies in our review. We verified that each study utilized concept drift detection tech-
niques and specifically applied them to the central topics of our review. Studies that used
these techniques for unrelated tasks were excluded to maintain the focus and relevance of
our review.

This diligent step refined our focus, resulting in a concentrated pool of 111 studies.
The thoroughness employed at this stage underscores the trustworthiness and reliability of
our review, maintaining the resonance and quality of the included research.

2.5. Quality Assessment

The objective of the quality assessment was to evaluate methodological rigor and
potential sources of bias in the included studies, ensuring reliable and valid findings.
We used an adapted Newcastle–Ottawa Scale (NOS) for methodological studies [17] and
CASP (Critical Appraisal Skills Programme)-like checklists for empirical and application
studies [18].
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The key criteria used for the assessment included methodological clarity, empirical
validation, reproducibility, and practical relevance. Methodological clarity involved as-
sessing whether the concept drift problem was clearly defined and whether methods and
algorithms were described in detail. Empirical validation included evaluating the relevance
and quality of datasets; the clarity and relevance of performance metrics, such as accuracy
and detection delay; and whether methods were compared with existing baseline meth-
ods. We assessed reproducibility by checking the availability of data, code, and steps to
reproduce the study for replication and the transparency of the study’s methodology and
reporting. Finally, we determined the practical relevance based on whether the methods
were applicable to real-world scenarios and the overall impact and contribution to the field.
Each study was rated on a scale from 1 to 5 for each criterion, and the overall quality scores
were calculated.

The studies considered high quality (a score of 4–5) had solid foundations with clear
problem statements, detailed and rigorous methodologies, robust validations, and high trans-
parency. Those of moderate quality (3–4) provided clear methodologies but had some
limitations in data availability or comparative analysis—they offered useful insights but
required careful interpretation. Those of low quality (below 3) had unclear problem state-
ments and insufficient methodological detail—they had methodological weaknesses and
were considered with caution. Table 1 lists the aggregated quality results.

Table 1. Summary of the quality assessment scores.

Quality Category Score Range Number of Studies Percentage of Total

High 4–5 51 45%
Moderate 3–4 45 41%
Low Below 3 15 14%
Total 111 100%

By systematically assessing the study quality and accounting for biases, this quality
assessment enhanced the reliability of our review on concept drift detection.

2.6. Synthesis of Results

The included studies varied in study design, drift types, data types, and methods. Key
characteristics included the following:

• Study Designs—supervised, semi-supervised, and unsupervised.
• Drift Types—pattern-based and distribution-based.
• Data Types—synthetic and real.
• Methods—drift detection mechanisms, window-based mechanisms, unsupervised

and semi-supervised methods, ensemble methods, and neural networks.

The studies were categorized based on the type of concept drift and the methods
used for detecting concept drift. Examining existing studies from the last two decades
revealed that concept drift can be grouped into two primary categories: distribution-
and pattern-based.

Distribution-based concept drift concerns changes in the statistical properties of data
over time, impacting machine learning model performance. These alterations may be
sudden, incremental, gradual, or recurrent. Conversely, pattern-based drift reflects changes
within data relationships and patterns, which can involve modifications to associations
between features, decision boundaries, or input and target variables.

Figures 1 and 2 illustrate these categories further. Notably, distribution-based drift
can appear as virtual concept drift, real concept drift, or via the introduction of a novel
class. Virtual drift involves changes in input feature distributions without impacting
the target variable. Real concept drift, which is impactful across healthcare, economics,
and financial markets, involves changes to the conditional probability p(Y|X). Lastly, novel
class appearance introduces new, previously unseen classes into the data stream.



Information 2024, 15, 786 6 of 24

Figure 1. Distribution-based concept drift: The figure shows various concept drift scenarios, where
different shapes represent different classes and changes in data distribution and class relationships.

Figure 2. Pattern-based concept drift: The figure illustrates different types of concept drift over time,
where changes in data distribution occur in sudden, incremental, reoccurring, and gradual patterns.

Pattern-based drift can be sudden, incremental, gradual, or recurrent. Sudden drift
typically characterizes instantaneous data distribution changes, while incremental drift
involves slow, continuous data changes. Meanwhile, gradual drift signifies consistent
changes over an extended period, and recurrent drift exhibits periodical and cyclical shifts
in data distribution.

The above described concept drift types are summarized in Table 2.
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Table 2. Summary of the concept drift types.

Drift Type Description Real-World Example

Virtual Drift Changes in P(X) without altering
P(Y|X).

Seasonal variations in customer
transactions.

Real Drift Changes in P(Y|X), affecting model
accuracy.

Introduction of new fraud
schemes in credit card

transactions.

Sudden Drift Abrupt, significant changes in data
distribution.

Market crashes in financial
forecasting.

Gradual Drift Slow, continuous changes over time. E-commerce trends shifting
during holiday seasons.

Incremental Drift Progressive evolution of data
distribution.

Evolving user preferences in
recommendation systems.

Recurrent Drift Cyclical changes in data
distribution. Seasonal sales patterns in retail.

Most researchers concentrate on specific types of drifts. Additionally, we noticed signif-
icant similarities between several concept drift detection mechanism types. Consequently,
we categorized drift detection mechanisms into five main types.

Drift detection mechanism. For drift detection mechanisms (DDMs), techniques such
as statistical tests and control charts are commonly used. These methods show high
accuracy in detecting distribution-based drifts.

Window-based mechanism (WBM): Methods employing a window-based mechanism
(WBM), like sliding windows and time-based windows, are used to manage data streams.
These approaches are effective for real-time drift detection.

Unsupervised and semi-supervised methods: Unsupervised and semi-supervised
methods (USSMs) include clustering and semi-supervised learning. These methods are
adaptable to changes in real-world data patterns and are often used to detect novel classes.

Ensemble method: Ensemble methods (EMs) combine multiple models to improve
detection accuracy and robustness. Studies demonstrate high performance across various
data types.

Neural networks: Advanced neural network (NN) models are employed for detecting
complex drifts. Although relatively new in concept drift detection, these methods show
high adaptability and accuracy.

3. Results
3.1. Study Selection

In our exploration of the concept drift carried out across a selected pool of 111 eligi-
ble studies, we embarked on a comprehensive analysis. This analysis resulted in a final
ensemble of 65 high-impact studies. Our primary focus was on the different types of con-
cept drift represented in these studies, forming a fundamental aspect of our forthcoming
discussions. This included examining the specific strategies employed to mitigate concept
drift, evaluating the strengths and weaknesses of these approaches, and assessing their
practical applicability. We also spotlighted the commonly invoked comparison metrics,
frameworks, and datasets supporting a comparative study of concept drift detection strate-
gies. The meticulous findings from our exhaustive analysis of these 65 studies formed the
backbone of our comprehensive review. In Figure 3, we provide an illustrative diagram
to further elucidate our meticulous selection process and its resulting reductions at each
stage. This PRISMA diagram summarizes the screening and eligibility assessment stages
and the reasons for exclusion at each phase. By referring to this visual aid, readers can
more easily comprehend our meticulous step-by-step approach and appreciate the depth
of our systematic review process.
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Identification of studies via database and registers

Id
en
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n

Sources of records identified

• Databases (n = 2 + 3)
• Registers (n = 450 + 40)

Records removed before screening

• Ineligible (n = 72)
• Other reasons (citations) (n = 62)

Sc
re

en
in

g

Records screened (n = 356) Records excluded (n = 102)

Reports sought for retrieval (n = 254) Not retrieved (n = 0)

Reports assessed for eligibility (n = 111)
Reports excluded

• Noncentral topic (n = 39)
• No comparative analysis (n = 32)
• Limited scope (n = 28)
• Lack of data (n = 20)
• Non-replicability (n = 16)
• Literature review (n = 4)
• Language (n = 3)
• Unreliable source (n = 1)

In
cl

ud
ed

Reports of included studies n = 65

Figure 3. PRISMA flow diagram illustrating the selection process of the studies.

3.2. Study Characteristics

The included studies were diverse regarding the study design, drift types, and meth-
ods used for concept drift detection. Table 3 summarizes these characteristics.
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Table 3. Summary of the characteristics of the included studies.

Study Drift Type Method Findings

DDM [19] Sudden+Gradual DDM Detects abrupt and gradual drifts by error rate changes.

Early DDM (EDDM) [20] Sudden+Gradual DDM Improves gradual drift detection using classification error distances.

Hoeffding’s DDM (HDDM) [21] Sudden+Gradual DDM Non-parametric online detection for abrupt and gradual drifts.

Fast Hoeffding’s DDM (FHDDM) [22] Sudden+Gradual DDM + WBM Enhances HDDM speed and sensitivity for abrupt and gradual drifts.

Reactive DDM (RDDM) [23] Sudden+Gradual+Reoccuring DDM Quickly detects abrupt and gradual drifts via the error rate.

Accurate DDM (ACDDM) [24] Sudden+Gradual+Reoccuring DDM Identifies abrupt, gradual, and recurring drifts with high accuracy.

Diversity-measure DDM (DMDDM) [25] Sudden+Gradual+Reoccuring DDM Uses classifier diversity to detect various drift types.

DDM with false positive rate (DDM-FP-M) [26] Sudden+Gradual+Reoccuring DDM Controls false positives while detecting various drift types.

Noise-tolerant DDM [27] Sudden+Gradual+Reoccuring DDM Distinguishes noise from drifts and detects gradual and
abrupt changes.

Group DDM [28] Sudden+Gradual+Reoccuring DDM Detects multiple drift types in data streams simultaneously.

Detecting concept drift using statistical testing (STEPD) [29] Sudden+Gradual WBM Detects drift using hypothesis tests on data streams and balances
false positives with detection sensitivity effectively.

Learning from time-changing data with adaptive windowing (ADWIN) [30] Sudden+Gradual WBM Detects sudden and gradual drift efficiently; sensitive to noise.

Paired learners for concept drift (PL) [31] Sudden+Gradual WBM Uses stable and reactive learners to detect concept drift efficiently and
outperforms other methods with fewer resources.

Mining concept-drifting data streams with multiple semi-random decision trees (MSRTs) [32] Sudden+Gradual+Reoccuring WBM
Utilizes multiple semi-random decision trees for drift detection,

adapting dynamically, and demonstrates improved performance in
time and accuracy.

Double window–based classification algorithm for concept-drifting data streams [32] Sudden+Gradual WBM Employs the double window mechanism

Dynamic financial distress prediction using instance selection for the disposal of concept
drift [33] - WBM Discusses four WBM types: full memory, no memory, fixed size, and

adaptable size.

Classifier ensemble for text streams [34] Sudden+Gradual WBM Experiments with textual data

EWMA charts [4] Sudden+Gradual WBM Maintains a constant false positive rate without storing data points

iForestASD [35] Sudden+Gradual+Reoccuring WBM Uses sliding with isolation forest windows for anomaly detection.

TRIO algorithm [36] Gradual WBM Combines text categorization and SVM for the early detection of
gradual drifts

SEED algorithm [37] Sudden+Gradual WBM Integrates drift and volatility detection to handle high-volume and
high-velocity data.
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Table 3. Cont.

Study Drift Type Method Findings

CEVOT [38] Sudden+Gradual WBM Combines evolutionary algorithms with decision trees for
incremental adaptation.

Dynamical systems tools [39] Sudden+Gradual WBM Uses dynamical models for detecting subtle changes

Fisher’s exact test [40] Sudden+Gradual WBM Adapts the Fisher test for efficient drift detection.

McDiarmid drift detection [41] Sudden+Gradual WBM Novel approach to detect concept drift using McDiarmid’s inequality.

Bayesian approach [42] Sudden WBM Bayesian method specifically for detecting abrupt concept drift.

Gaussian mixture models [43] Sudden+Gradual+Reoccuring WBM Detects rapid changes in industrial settings.

Learn++ with sliding time window [44] Sudden+Gradual+Reoccuring WBM Addresses imbalanced classification

Just-in-time learning (JITL) [45,46] Sudden+Gradual+Reoccuring WBM Integrates with window mechanisms for soft sensor design.

Shifting window mechanism for SVMs [47,48] Sudden+Gradual+Reoccuring WBM Integrates SVM into methodologies to manage concept
drift effectively.

Spectral entropy and bernoulli map [49] Sudden+Gradual WBM Employs spectral entropy combined with the Bernoulli map.

Multi-sliding windows for drift type identification [50] - WBM Main focus is on the detection of drift type.

Classification and novel class detection in concept-drifting data streams under time
constraints [51] Novel Class USSM Addresses the novel class detection problem

SUN algorithm [52] Sudden+Gradual USSM SUN employs k-modes and decision trees to identify concept
drift effectively.

Detection of concept drift for learning from stream data [53] Sudden+Gradual USSM Uses correlation information to detect concept drift in multi-stream
data models.

Recognizing input space and target concept drifts with scarcely labeled and unlabeled
instances [54] Sudden+Gradual+Reoccuring USSM Uses active learning and classifier certainty to detect drifts with

minimal labeled data.

Margin density drift detection (MD3) [55] Sudden+Gradual USSM Tracks the number of samples in the uncertainty region as a metric to
detect drift.

Handling adversarial concept drift in streaming data [56] Sudden USSM With predict–detect framework, includes adversarial forethought and
context for drift detection and mitigation.

DetectA: abrupt concept drift detection in non-stationary environments [57] Sudden USSM As a proactive approach, uses unsupervised learning and statistical
comparisons for efficient drift detection.

Concept drift robust adaptive novelty detection for data streams [58] Novel Class USSM Includes ELBND, LE, and adaptive methods using NLMS metrics
and excels in robust drift detection.
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Table 3. Cont.

Study Drift Type Method Findings

OLINDDA technique [59] Novel Class USSM Presents a cluster-based approach for detecting novelty and
concept drift

Online reliable semi-supervised learning on evolving data streams [60] Sudden+Gradual+Reoccuring USSM As a micro-cluster-based technique, ensures high performance in
semi-supervised environments with limited labeled data.

Semi-supervised classification on data streams with recurring concept drift and concept
evolution [61] Sudden+Gradual+Reoccuring USSM Uses an ESCR framework employs Jensen–Shannon divergence and

clustering for efficient and accurate drift detection.

Conformal prediction for semi-supervised classification on data streams (CPSSDS)
algorithm [62] Reoccuring USSM Proposes a semi-supervised framework with conformal prediction

and self-training for efficient drift detection in evolving data streams.

Novel semi-supervised classification approach for evolving data streams [63] Sudden+Gradual+Reoccuring USSM As a semi-supervised framework, uses dynamic micro-clusters and
online updates for efficient concept drift detection.

Robust ensemble learning for mining noisy data streams [64] Sudden+Gradual EM
Employs AE framework that combines varied learning

algorithm-based classifiers, enhancing performance on noisy data
streams.

Adaptive ensemble classifier for mining concept-drifting data streams [65] Sudden+Gradual EM Merges decision trees and clustering to enhance classification
accuracy and adaptability.

Online accuracy updated ensemble (OAUE) [3] Sudden+Gradual+Reoccuring EM Transforms block-based ensembles for efficient reactions to sudden
and gradual concept drifts.

Ensemble of subset online sequential extreme learning machine (ESOS-ELM) [66] Sudden+Gradual EM Balances class samples using dynamic weighted voting, excelling in
both stationary and non-stationary environments.

DEVE-AT and ADASVM-TW algorithms [67] Sudden+Gradual+Reoccuring EM Use time weighting and Adaboost-SVM for superior financial
distress prediction.

Gradual resampling ensemble (GRE) algorithm [68] Gradual EM Uses selective resampling, clustering, and dynamic updates to
achieve superior performance across various drift types.

Selection-based resampling ensemble (SRE) Sudden+Gradual+Reoccuring EM Balances class distributions and periodically updates members for
robust performance across concept drifts.

Handling imbalanced data with concept drift (HIDC) [69] Sudden+Gradual+Reoccuring EM Combines dynamic sampling and ensemble classification, adapting to
ensure accuracy despite concept drift and class imbalance.

Preprocessed dynamic classifier ensemble selection for highly imbalanced drifted data
streams [70] Sudden+Gradual EM Integrates preprocessing and dynamic selection, enhancing

performance in imbalanced and non-stationary data.

AESAKNNS [71] Gradual EM Employs adaptive subspaces and dynamic training to achieve
superior adaptation to concept drift in multi-label datasets.
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Table 3. Cont.

Study Drift Type Method Findings

Extreme learning machine (ELM) [66] Sudden+Gradual+Reoccuring NN With a quick learning speed, uses a single-step LSE method for
training SLFN, bypassing iterative gradient descent methods.

Fast incremental ELM algorithm [72] Sudden+Gradual+Reoccuring NN Determines neuron quantity and randomly selects activation
functions to achieve improved accuracy in classification.

FP-ELM [73] Sudden+Gradual+Reoccuring NN Performs better than traditional ensemble approaches on several
regression and classification problems with concept drift.

GPU-accelerated ELM [74] Sudden+Gradual+Reoccuring NN Balances classes and detect drift, reducing processing time, providing
effective real-time big data mining.

Meta-cognitive online sequential ELM (MOS-ELM) [75] Sudden+Gradual+Reoccuring NN Outperforms several existing methods on various multi-class
datasets, effectively handling both imbalanced data and concept drift

Dynamic ELM (DELM) [76] Sudden+Gradual+Reoccuring NN Uses ELM and a drift detection threshold to ensure superior accuracy
and adaptability in various concept drift scenarios.

Evolving spiking NN (eSNN) [77] Gradual+Reoccuring NN Employs data reduction and repository size limitation, providing
higher accuracy in online learning environments.

Meta-RKOS-ELM-DDM [78] Sudden+Gradual+Reoccuring NN Integrates a DDM and ALD kernel filter, enhancing prediction
accuracy and learning efficiency.

Meta-RRKOS-ELM [79] Sudden+Gradual+Reoccuring NN
Merges recurrent kernel OS-ELM with DDM and the recursive kernel

method to achieve enhanced performance and efficiency in
handling drift.

I-LSTM [80] Gradual+Reoccuring NN
For IoT services, uses smooth activation and a time-based forgetting

mechanism to achieve superior anomaly detection in
time-series data.

SEOA [81] Sudden+Gradual+Reoccuring NN
Uses adaptive depth units in an ensemble to achieve superior
performance, balance, speed, and generalization in handling

concept drift.
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3.3. Findings on Concept Drift Detection Methods

The studies were categorized based on the methods used for detecting concept drift.
This section details the findings for each category.

DDMs. The concept of drift detection was significantly advanced by the work of
Gama et al. in 2004 with their introduction of the DDM [19]. This method has since become
a benchmark, inspiring numerous subsequent techniques that either build upon or modify
the original algorithm. The main structure of the DDM is provided in Algorithm 1.

Algorithm 1: General algorithm for drift detection mechanisms.
Input: Data stream continuously entering the system
Output: Updated model, responsive to the concept drift
Function DetectDrift(data):

while new data available do
Calculate error rate pt
Compute standard deviation st:

st =

√
pt(1 − pt)

t

// Set the minimum error rate and standard deviation based
on historical data or the initial stable period

Set pmin as the minimum observed error rate
Set smin as the standard deviation corresponding to pmin
Set warning level threshold:

pt + st ≥ pmin + 2 × smin

Set drift level threshold:

pt + st ≥ pmin + 3 × smin

if warning level detected then
Initiate a new model

end
if drift level detected then

Replace current model
end

end

The DDM operates based on Statistical Process Controls (SPCs) [82] by monitoring the
error rate of a predictive model over time. As new data points are processed, the algorithm
calculates the error rate pt and its standard deviation st. The method sets two critical
thresholds: a warning level and a drift level. The warning level threshold is defined as
pt + st ≥ pmin + 2 × smin, indicating potential concept drift and prompting the system
to initiate a new model. The drift level threshold, defined as pt + st ≥ pmin + 3 × smin,
confirms the drift, leading to the replacement of the current model.

This approach allows the system to dynamically adapt to changes in the data stream,
maintaining model accuracy and performance. The pioneering work by Gama et al. laid the
foundation for many advanced drift detection methods that incorporate various enhance-
ments and modifications to improve detection accuracy and responsiveness to different
types of drifts. While DDM is efficient for real-time applications, it can produce false
positives in noisy environments. Its limitations in detecting gradual drift have led to the
development of extensions like EDDM [20].
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WBMs. WBMs are pivotal in the detection of concept drift within data streams. By utiliz-
ing a systematic approach that compares the statistical characteristics of historical data with
newly observed data, these methods effectively monitor and identify shifts in data distribution.
Typically, these approaches involve the use of two distinct data windows, one static (historical)
and one dynamic (adjusting with new data), allowing for the continuous assessment and
identification of changes over time.

Several seminal papers, though published over a decade ago, continue to serve as
benchmarks in the field of concept drift detection. Notably, the research paper “Detecting
Concept Drift Using Statistical Testing” by Kyosuke Nishida from 2007 [29] introduced
the STEPD algorithm, which remains influential. Meanwhile, Albert Bifet’s 2007 work
“Learning from Time-changing Data with Adaptive Windowing” (ADWIN) [30] has made
substantial contributions to adaptive learning strategies. Based on these papers, many new
advanced techniques have been developed.

The general structure of the window-based concept DDMs is described in Algorithm 2.

Algorithm 2: WBM for concept drift detection
Input: Data stream continuously entering the system
Output: Updated model, responsive to the concept drift
Function DetectDrift(data):

Define window types (Sliding, Fixed, Adaptive)
Initialize model with initial training set
while new data available do

Update window with incoming data
if window type is adaptive then

Adjust window size based on drift detection
else

Maintain fixed or slide window
end
Detect potential drift using statistical tests or error monitoring
if drift detected then

Retrain or update the model with data within the current window
Optionally adjust ensemble models
Evaluate model performance
Adjust window strategy based on performance feedback
Trigger alerts or automated responses

end
Provide updated predictions

end

WBMs like ADWIN are mostly responsive to sudden drifts, but are computationally
intensive. They may struggle with gradual drift due to their focus on distinct statistical
shifts. Another challenge for learning is that the feedback (the ground truth of mass flow)
is not available at all; it can only be approximately estimated by retrospectively inspecting
the historical data. An additional challenge is to deal with specific one-sided outliers that
can be easily mistaken for changes [83].

USSMs: USSMs detect concept drift by leveraging clustering, density estimation, and
other techniques to monitor changes in data distributions. These methods are particularly
effective in scenarios with sparse labeled data or mixed data streams containing both
categorical and numerical values. USSMs have gained significant attention over the past
two decades due to their ability to handle complex, real-world datasets and detect novel
classes as they emerge [84]. USSMs focus on identifying changes in data patterns without
relying heavily on labels. For instance, clustering-based approaches monitor the formation
and evolution of clusters over time, flagging new or significantly altered clusters as potential
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drifts. This makes USSMs especially valuable in applications like fraud detection and
cybersecurity, where data streams may exhibit unexpected patterns or novel behaviors [59].

USSMs often rely on clustering techniques to group similar data points into clusters,
representing stable patterns in the data. When new data points deviate significantly from
these clusters, they are flagged as drift events. Novel class detection, a key application of
USSMs, identifies previously unseen categories in the data stream, making these methods
highly adaptable in dynamic environments such as network security or e-commerce [59].
Density-based methods within USSMs provide probabilistic interpretations for drift detec-
tion. These methods calculate the density of data points in a given space, with significant
density changes indicating potential drift [85]. USSMs exhibit several advantages. These
methods can detect novel patterns and categories, making them ideal for dynamic environ-
ments with minimal labeled data. However, USSMs also present notable disadvantages.
Clustering and density estimation methods are computationally expensive, especially with
high-dimensional data streams. Furthermore, USSMs are prone to false positives in noisy
datasets as outliers can be misclassified as drift events [86].

EMs: EMs have become exceedingly popular for concept drift detection due to their
ability to combine multiple models, improving predictive performance and robustness. By
leveraging the diversity of individual models, EMs can effectively adapt to changes in data
distribution, making them highly suitable for dynamic environments where concept drift
is prevalent. This adaptability is particularly valuable in addressing imbalanced datasets,
where ensemble algorithms provide superior performance by emphasizing minority classes
and improving the overall detection rate [3].

Ensemble techniques like the online accuracy updated ensemble (OAUE) adapt model
weights based on recent performance, ensuring that the ensemble remains responsive to cur-
rent data patterns. This dynamic adjustment aligns with decision theory, where weighting
models based on their suitability to the current data distribution enhances robustness [3].
OAUE, for instance, continuously evaluates model performance and re-weights or replaces
individual models as needed, maintaining high accuracy in non-stationary environments.
EMs are also effective in handling recurring drifts by preserving previously trained models
that can quickly be reactivated when similar patterns reappear.

The theoretical foundation of EMs lies in ensemble learning theory, which emphasizes
the use of diverse classifiers to reduce bias and variance. By combining predictions from
multiple models, ensemble methods mitigate overfitting and improve generalization [3].
Techniques like bagging and boosting are commonly employed to train diverse classifiers,
while weighting strategies prioritize models most attuned to current data distributions.
These methods enable EMs to handle both abrupt and gradual drifts, as well as recurring
patterns, with minimal loss in accuracy.

While EMs exhibit several advantages, they also come with notable drawbacks. EMs
provide high accuracy and adaptability, making them effective across a variety of applica-
tion domains such as fraud detection, predictive maintenance, and real-time recommenda-
tion systems. However, their computational demands are significant due to the overhead
of maintaining multiple models and dynamically adjusting their weights. This complex-
ity requires sophisticated management strategies to ensure that the ensemble optimally
adapts without incurring excessive resource costs. Additionally, EMs may face scalability
challenges in high-velocity data streams where quick responses are critical.

Despite these challenges, ensemble methods continue to be a cornerstone in concept
drift detection research. Their versatility and robustness make them indispensable for
real-world applications, especially in domains where data distributions are highly volatile
or imbalanced.

NNs: Neural networks (NNs) have attracted significant attention in the field of concept
drift detection because of their powerful learning capabilities and adaptability to changing
data distributions. By leveraging deep learning techniques, NNs can effectively capture
complex patterns and relationships within data streams, making them well suited for
dynamic environments. Among the various neural network approaches, those from the
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extreme learning machine (ELM) family have become particularly popular. ELMs are
widely used in large datasets and online learning applications due to their fast learning
speed. Unlike iterative gradient descent methods, such as backpropagation, ELMs utilize a
single-step least square estimation (LSE) method for training a single-hidden-layer feed-
forward network (SLFN), making them highly efficient [66].

Neural networks, particularly deep architectures, are capable of modeling complex,
non-linear relationships in high-dimensional and unstructured data. Incremental learning
methods, such as ELMs, enhance adaptability for data streams with frequent drift [66].
LSTM (long short-term memory) networks are another popular approach for handling
sequential data. Their ability to retain temporal dependencies makes them highly effective
in detecting concept drift in time-series data. To maintain stability in dynamic environments,
regularization techniques like elastic weight consolidation (EWC) have been developed.
EWC minimizes catastrophic forgetting by preserving critical parameters while adapting
to new data, ensuring that previously learned knowledge is not overwritten [77].

The theoretical foundations of NNs in drift detection are grounded in statistical
learning and neural computation, emphasizing adaptability and generalization. ELMs, in
particular, are designed for efficient drift detection, achieving high accuracy while reducing
computational overhead. Techniques like dropout and EWC further improve the robustness
of neural networks by preventing overfitting and mitigating catastrophic forgetting [6].

While NNs excel in adaptability and accuracy, they also have notable disadvantages.
NNs are computationally intensive, requiring significant resources for training and in-
ference, which can limit their scalability in real-time applications. Additionally, they are
prone to catastrophic forgetting, where the model’s performance on previously seen data
degrades as it learns new patterns. Regularization techniques like EWC provide solutions
to this issue but add to the complexity of implementation. Despite these challenges, the
flexibility and robustness of NNs make them invaluable in domains such as financial
time-series analysis, fraud detection, and dynamic pricing, where data distributions evolve
continuously [6].

3.4. Comparison of Concept Drift Detection Methods

To objectively assess the performance of concept drift detection methods, this section
incorporates findings from comparative studies that evaluate accuracy, computational cost,
and applicability across various data types and drift scenarios.

Recent studies have systematically compared these methods, providing deeper in-
sights into their relative performance across various contexts. Barros et al. presented two
papers in 2018 and 2019 where researchers evaluated different methods across multiple
datasets and drift types. Their studies highlighted the robustness of ensemble techniques,
particularly their adaptability to diverse drift scenarios, though computational cost re-
mained a challenge [87,88]. Other important findings were provided by Poenaru-Olaru et
al. (2022). The researchers analyzed the reliability of concept drift detectors in real-time
applications. Their research compared error rate-based and data distribution-based de-
tectors, revealing trade-offs between detection delay and false alarm rates [89]. Hinder et
al. (2023) provided a survey and standardized experiments to benchmark unsupervised
drift detection methods. Their study underscored the effectiveness of USSMs in scenarios
with sparse labels but noted their susceptibility to noise [90]. Last, but not least, LSTM
networks [91] are particularly effective in handling sequential data as they retain temporal
dependencies crucial for detecting concept drift in time-series applications. For instance,
Lobo et al. (2018) demonstrated the effectiveness of evolving spiking neural networks,
inspired by LSTMs, for online learning over drifting data streams [77].

Key Observations

1. Accuracy vs. Computational Cost: While neural networks (NNs) and ensemble
methods (EMs) provide the highest accuracy, their computational cost limits their real-
time applicability. In contrast, drift detection mechanisms (DDMs) and window-based
mechanisms (WBMs) offer a balance between accuracy and efficiency.
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2. Specialized Use Cases: Unsupervised and semi-supervised methods (USSMs) excel
in novel class detection, and WBMs are ideal for streaming environments. EMs and
NNs are better suited for complex, evolving data distributions.

3. Emerging Trends: Hybrid approaches combining lightweight methods (e.g., DDMs)
with adaptive techniques (e.g., NNs) show promise in balancing computational effi-
ciency with detection accuracy.

The findings are summarized in Table 4.

Table 4. Comparison of the concept drift detection methods.

Method Accuracy Computational Cost Applicability

DDM High Low Cost effective and easy to apply in real time

WBM Medium Medium Works better with gradual drift than DDM and easy
to apply in real time

USSM Medium Medium Works best with novel class detection

EM Very High High Can be applied to various data types but with
higher computational cost

NN Very High High Mostly have higher cost but higher accuracy

3.5. Other Notable Findings on Concept Drift Detection Methods

In reviewing numerous papers on concept drift detection using different methods, several
key comparison criteria emerged that are commonly used to evaluate the performance of these
approaches. These criteria can be used to comprehensively assess a model’s effectiveness
and efficiency in handling dynamic data streams. The main comparison criteria included
the following.

Prequential error. The prequential error measurement method developed by Dawid [92] is
mostly used to compute a model’s accuracy. The prequential error is often calculated using
common evaluation metrics such as accuracy. The incremental calculation for accuracy
(Acc) in a prequential context can be expressed as follows:

Acct+1 =
t × Acct + δt+1

t + 1
,

where Acct+1 is the accuracy after observing the (t + 1)th instance, Acct is the accuracy
after observing the tth instance, and δt+1 is the binary indicator of whether the prediction
for the (t + 1)th instance is correct (1 if correct, 0 if incorrect).

Handling imbalanced classification. Many real-world data streams are imbalanced,
and some classes are significantly under-represented. Evaluating how models handle
imbalanced classification is essential as it affects a model’s ability to learn from minority
classes and maintain high overall accuracy. Common strategies to address imbalanced
classification include the following:

• Resampling techniques—methods such as SMOTE (synthetic minority over-sampling
technique) and its variants are widely used to balance datasets. Recent advancements,
such as adaptive oversampling techniques, focus on regions prone to classification
errors [93].

• Cost-sensitive learning—adjusting the learning algorithm to penalize the misclassifi-
cations of a minority class more heavily [94].

• Synthetic data generation—creating synthetic examples of a minority class to balance
the dataset [95].

The effectiveness of these strategies is typically assessed using metrics like F1 score,
precision–recall curves, and area under the curve (AUC) for receiver operating characteristic
(ROC) analysis.
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Comparison of speed: The speed of model training and prediction is a critical factor,
especially in real-time applications. Various metrics are used to measure and compare the
computational efficiency of different approaches:

• Training time—incremental learning models like Hoeffding trees are well suited for
reducing the training overhead in data streams. One of the most popular approaches
in concept drift is considered Hoeffiding trees [96].

• Prediction time—the time taken to make predictions on new data points.
• Throughput—the number of data points processed per unit time. DDM’s maintain

high throughput with minimal computational overhead, making them suitable for
high-speed applications.

• Latency—the delay before the system starts to output predictions after receiving
new data [97].

Evaluating these metrics helps us understand the trade-offs between model complexity,
accuracy, and computational demands such that the chosen approach can meet the real-time
requirements of the application.

Dataset characteristics: Researchers commonly utilize a range of benchmark datasets
to thoroughly evaluate the performance and robustness of various concept drift detection
methods. These datasets represent diverse real-world scenarios, including different types
and magnitudes of concept drift, class imbalances, and varying data distributions. In
Table 5, we summarize the main datasets and their characteristics used for the concept drift
detection problem.

Many of these datasets are implemented and tested within the MOA (Massive On-
line Analysis, ver. 24.07.0) framework, a widely used open-source software for data
stream mining.

The THU-Concept-Drift-Datasets are relatively new. These datasets are free and
integrated with convenient interfaces for data stream generation and manipulation, making
them an excellent resource for testing and comparing concept drift detection methods [98].

Table 5. Summary of the datasets used for concept drift detection.

Dataset Type Name Characteristics Short Description

Synthetic SEA Concepts Abrupt drift Data points generated from three attributes, with concept drift
introduced by changing the decision boundary.

Synthetic Hyperplane Gradual drift
Represents a moving hyperplane in a multi-dimensional space,
with drift simulated by changing the hyperplane’s position or
orientation over time.

Synthetic Rotating Hyperplane Continuous drift A variant of the Hyperplane dataset where the hyperplane rotates
over time, introducing smooth concept drift.

Synthetic Random RBF Sudden and
gradual drift

Instances generated based on several centroids, with drift introduced
by moving the centroids or changing their standard deviations.

Real-world Electricity Market
(Elec2)

Abrupt and
gradual drift

Contains electricity price data, with the task of predicting price
changes under varying market conditions.

Real-world Airlines Concept drift due to
changing factors

Flight delay information, used to predict delays based on historical
data, reflecting drift from changing flight patterns and
weather conditions.

Real-world KDD Cup 1999 Various attack
patterns

Network intrusion detection dataset with different types of attacks,
used to evaluate robustness against varying attack patterns.

Real-world Weather Data Gradual and
abrupt drift

Weather prediction dataset incorporating both gradual and abrupt
drift due to seasonal variations and unexpected events.

Real-world
(imbalanced)

Credit Card Fraud
Detection Class imbalance

Credit card transaction dataset used to detect fraudulent activities,
characterized by a significant imbalance between fraud and
non-fraud cases.

Imbalanced Medical Data Rare events
Used for disease prediction tasks, where the incidence of the
condition is much lower than that of the non-condition, testing the
algorithm’s ability to detect rare events.
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Table 5. Cont.

Dataset Type Name Characteristics Short Description

THU-Concept-Drift-
Datasets Linear Gradual, sudden,

recurrent, abrupt drift
Decision boundary is a straight line, with drift simulated by rotating
the line.

THU-Concept-Drift-
Datasets CakeRotation Rotational drift Samples with odd/even angle areas belong to different classes,

with drift simulated by rotating the disk.

THU-Concept-Drift-
Datasets ChocolateRotation Rotational drift Samples with odd/even x + y areas belong to different classes,

with drift introduced by rotating the chocolate plate.

THU-Concept-Drift-
Datasets RollingTorus Overlapping

categories

Features two toruses where samples in different toruses belong to
different classes, with drift simulated by rolling a third torus over the
first two.

4. Conclusions and Future Work Directions

This systematic literature review explored the evolving strategies in concept drift
detection over the past two decades. By analyzing a wide range of methodologies, including
DDMs, WBMs, USSMs, EMs, and NN techniques, we provide a comprehensive overview
of how the field has progressed and adapted to the dynamic nature of data streams. Our
review highlights the significant contributions of various algorithms and frameworks, each
addressing specific challenges associated with concept drift.

The use of synthetic and real-world datasets has been crucial in evaluating the perfor-
mance of these methods. Datasets such as SEA Concepts, Hyperplane, Electricity Market,
and Credit Card Fraud Detection have been instrumental in testing the adaptability and
robustness of concept drift detection algorithms. Additionally, the THU-Concept-Drift-
Datasets and the MOA (Massive Online Analysis) framework have emerged as valuable
resources for researchers, offering diverse scenarios to rigorously test and compare dif-
ferent methods. However, further efforts should focus on curating benchmark datasets
that include real-world complexities, such as noisy environments, mixed drift types, and
high-dimensional data, to better reflect practical applications.

Despite the extensive research and numerous advancements in the field, several
weak points remain. One major limitation is the handling of imbalanced data, which
continues to pose significant challenges for many algorithms. While some methods have
been specifically designed to address class imbalance, further research is needed to develop
more effective and generalizable solutions. For example, integrating dynamic ensemble
methods with adaptive resampling techniques could address imbalances in streaming
environments. Recommendation: Investigate hybrid frameworks combining oversampling
with adaptive cost-sensitive algorithms to improve performance on imbalanced datasets.

Another area that requires attention is the computational efficiency of concept drift
detection methods. As the volume and velocity of data streams increase, the need for fast
and scalable algorithms becomes more critical. Many current approaches still struggle with
high computational costs, which can limit their applicability in real-time environments.
Recommendation: Explore parallel computing and hardware acceleration, such as GPU-
optimized neural networks, and investigate lightweight, low-latency detection models for
deployment in real-time scenarios.

Additionally, concept drift detection in regression tasks has not been as thoroughly
analyzed as in classification tasks. Many existing studies focus on classification, leaving
a gap in understanding and effectively addressing concept drift in regression scenarios.
More research is needed to develop robust methods for regression tasks, where the contin-
uous nature of the target variable presents unique challenges. Recommendation: Develop
regression-specific drift detection metrics and algorithms that focus on subtle shifts in
continuous relationships, such as changes in correlation structures or error variance.

The application of concept drift detection methods to non-tabular datasets, such as
image and time-series data, remains underexplored. Most current approaches are designed
for tabular data, and adapting these methods to handle image data’s high-dimensional and
complex nature presents a significant challenge. Techniques such as convolutional neural
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networks (CNNs) and graph neural networks (GNNs) could be adapted to directly integrate
drift detection into their architectures. Recommendation: Investigate the application of
unsupervised feature extraction techniques, such as autoencoders, combined with domain-
specific neural architectures to handle non-tabular data effectively.

Another pressing issue is the limited focus on unsupervised drift detection methods,
which are critical for scenarios where labeled data are scarce or unavailable. Advancing
clustering-based and density-based techniques to handle high-dimensional, noisy data is
a promising direction. Recommendation: Incorporate self-supervised learning techniques
to generate pseudo-labels, enabling more effective drift detection in unlabeled datasets.
Develop approaches that require less computational cost.

Moreover, the majority of existing studies focus on synthetic and controlled datasets,
which may not fully capture the complexities of real-world data streams. More research is
needed on diverse and representative datasets to ensure that the proposed methods can
be effectively generalized to practical applications. Recommendation: Curate real-world
benchmark datasets with annotations for known drift types, including contextual metadata,
to improve the practical evaluation of drift detection methods.

Finally, the evaluation of concept drift detection methods would benefit from the de-
velopment of standardized protocols. Existing evaluation criteria often emphasize accuracy
while neglecting practical metrics such as detection delay, computational throughput, and
memory footprint. Recommendation: Establish a unified evaluation framework incorporat-
ing detection latency, scalability metrics, and resource usage alongside traditional accuracy
measures to promote practical applicability.

In summary, while significant progress has been made in the field of concept drift
detection, ongoing research is essential to address the existing limitations. By leveraging
advanced machine learning techniques and incorporating diverse datasets, future studies
can further enhance the robustness and efficiency of concept drift detection methods,
ensuring their applicability in a wide range of dynamic and evolving data environments.
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