Utilize este identificador para referenciar este registo: http://hdl.handle.net/10071/30730
Registo completo
Campo DCValorIdioma
dc.contributor.authorMendizabal, I. V.-
dc.contributor.authorVidriales, X.-
dc.contributor.authorBasto-Fernandes, V.-
dc.contributor.authorEzpeleta, E.-
dc.contributor.authorMéndez, J. R.-
dc.contributor.authorZurutuza, U.-
dc.date.accessioned2024-01-31T12:50:56Z-
dc.date.available2024-01-31T12:50:56Z-
dc.date.issued2023-
dc.identifier.citationMendizabal, I. V., Vidriales, X., Basto-Fernandes, V., Ezpeleta, E., Méndez, J. R., & Zurutuza, U. (2023). Deobfuscating leetspeak with deep learning to improve spam filtering. International Journal of Interactive Multimedia and Artificial Intelligence, 8(4), 46-55. https://dx.doi.org/10.9781/ijimai.2023.07.003-
dc.identifier.issn1989-1660-
dc.identifier.urihttp://hdl.handle.net/10071/30730-
dc.description.abstractThe evolution of anti-spam filters has forced spammers to make greater efforts to bypass filters in order to distribute content over networks. The distribution of content encoded in images or the use of Leetspeak are concrete and clear examples of techniques currently used to bypass filters. Despite the importance of dealing with these problems, the number of studies to solve them is quite small, and the reported performance is very limited. This study reviews the work done so far (very rudimentary) for Leetspeak deobfuscation and proposes a new technique based on using neural networks for decoding purposes. In addition, we distribute an image database specifically created for training Leetspeak decoding models. We have also created and made available four different corpora to analyse the performance of Leetspeak decoding schemes. Using these corpora, we have experimentally evaluated our neural network approach for decoding Leetspeak. The results obtained have shown the usefulness of the proposed model for addressing the deobfuscation of Leetspeak character sequences. © 2023, Universidad Internacional de la Rioja.eng
dc.language.isoeng-
dc.publisherUniversidad Internacional de La Rioja-
dc.relationTIN2017-84658-C2-1-R-
dc.relationTIN2017-84658-C2-2-R-
dc.relationinfo:eu-repo/grantAgreement/FCT/6817 - DCRRNI ID/UIDB%2F04466%2F2020/PT-
dc.relationinfo:eu-repo/grantAgreement/FCT/6817 - DCRRNI ID/UIDP%2F04466%2F2020/PT-
dc.rightsopenAccess-
dc.subjectConvolutional neural networkseng
dc.subjectDeep learningeng
dc.subjectLeetspeakeng
dc.subjectSpam filteringeng
dc.subjectText deobfuscationeng
dc.titleDeobfuscating leetspeak with deep learning to improve spam filteringeng
dc.typearticle-
dc.pagination46 - 55-
dc.peerreviewedyes-
dc.volume8-
dc.number4-
dc.date.updated2024-01-31T12:49:51Z-
dc.description.versioninfo:eu-repo/semantics/publishedVersion-
dc.identifier.doi10.9781/ijimai.2023.07.003-
dc.subject.fosDomínio/Área Científica::Ciências Naturais::Ciências da Computação e da Informaçãopor
dc.subject.fosDomínio/Área Científica::Engenharia e Tecnologia::Engenharia Eletrotécnica, Eletrónica e Informáticapor
iscte.subject.odsIndústria, inovação e infraestruturaspor
iscte.identifier.cienciahttps://ciencia.iscte-iul.pt/id/ci-pub-98861-
iscte.alternateIdentifiers.scopus2-s2.0-85178491929-
iscte.journalInternational Journal of Interactive Multimedia and Artificial Intelligence-
Aparece nas coleções:ISTAR-RI - Artigos em revistas científicas internacionais com arbitragem científica

Ficheiros deste registo:
Ficheiro TamanhoFormato 
article_98861.pdf1,3 MBAdobe PDFVer/Abrir


FacebookTwitterDeliciousLinkedInDiggGoogle BookmarksMySpaceOrkut
Formato BibTex mendeley Endnote Logotipo do DeGóis Logotipo do Orcid 

Todos os registos no repositório estão protegidos por leis de copyright, com todos os direitos reservados.