Utilize este identificador para referenciar este registo: http://hdl.handle.net/10071/30120
Registo completo
Campo DCValorIdioma
dc.contributor.authorTaborda, B.-
dc.contributor.authorde Almeida, A.-
dc.contributor.authorDias, J. C.-
dc.contributor.authorBatista, F.-
dc.contributor.authorRibeiro, R.-
dc.date.accessioned2023-12-28T11:18:17Z-
dc.date.available2023-12-28T11:18:17Z-
dc.date.issued2023-
dc.identifier.citationTaborda, B., de Almeida, A., Dias, J. C., Batista, F., & Ribeiro, R. (2023). SA-MAIS: Hybrid automatic sentiment analyser for stock market. Journal of Information Science. https://dx.doi.org/10.1177/01655515231171361-
dc.identifier.issn0165-5515-
dc.identifier.urihttp://hdl.handle.net/10071/30120-
dc.description.abstractSentiment analysis of stock-related tweets is a challenging task, not only due to the specificity of the domain but also because of the short nature of the texts. This work proposes SA-MAIS, a two-step lightweight methodology, specially adapted to perform sentiment analysis in domain-constrained short-text messages. To tackle the issue of domain specificity, based on word frequency, the most relevant words are automatically extracted from the new domain and then manually tagged to update an existing domain-specific sentiment lexicon. The sentiment classification is then performed by combining the updated domain-specific lexicon with VADER sentiment analysis, a well-known and widely used sentiment analysis tool. The proposed method is compared with other well-known and widely used sentiment analysis tools, including transformer-based models, such as BERTweet, Twitter-roBERTa and FinBERT, on a domain-specific corpus of stock market-related tweets comprising 1 million messages. The experimental results show that the proposed approach largely surpasses the performance of the other sentiment analysis tools, reaching an overall accuracy of 72.0%. The achieved results highlight the advantage of using a hybrid method that combines domain-specific lexicons with existing generalist tools for the inference of textual sentiment in domain-specific short-text messages.eng
dc.language.isoeng-
dc.publisherSAGE-
dc.relationinfo:eu-repo/grantAgreement/FCT/6817 - DCRRNI ID/UIDB%2F50021%2F2020/PT-
dc.relationinfo:eu-repo/grantAgreement/FCT/6817 - DCRRNI ID/UIDB%2F00315%2F2020/PT-
dc.rightsopenAccess-
dc.subjectSentiment analysiseng
dc.subjectSentiment classificationeng
dc.subjectSentiment lexiconeng
dc.subjectStock marketeng
dc.subjectTweetseng
dc.titleSA-MAIS: Hybrid automatic sentiment analyser for stock marketeng
dc.typearticle-
dc.peerreviewedyes-
dc.volumeN/A-
dc.date.updated2023-12-28T11:17:39Z-
dc.description.versioninfo:eu-repo/semantics/publishedVersion-
dc.identifier.doi10.1177/01655515231171361-
dc.subject.fosDomínio/Área Científica::Ciências Naturais::Ciências da Computação e da Informaçãopor
dc.subject.fosDomínio/Área Científica::Ciências Sociais::Ciências da Comunicaçãopor
dc.subject.fosDomínio/Área Científica::Ciências Sociais::Outras Ciências Sociaispor
iscte.subject.odsIndústria, inovação e infraestruturaspor
iscte.identifier.cienciahttps://ciencia.iscte-iul.pt/id/ci-pub-95838-
iscte.alternateIdentifiers.wosWOS:000983180400001-
iscte.alternateIdentifiers.scopus2-s2.0-85161660791-
iscte.journalJournal of Information Science-
Aparece nas coleções:BRU-RI - Artigos em revistas científicas internacionais com arbitragem científica
ISTAR-RI - Artigos em revistas científicas internacionais com arbitragem científica

Ficheiros deste registo:
Ficheiro TamanhoFormato 
article_95838.pdf652,91 kBAdobe PDFVer/Abrir


FacebookTwitterDeliciousLinkedInDiggGoogle BookmarksMySpaceOrkut
Formato BibTex mendeley Endnote Logotipo do DeGóis Logotipo do Orcid 

Todos os registos no repositório estão protegidos por leis de copyright, com todos os direitos reservados.