Utilize este identificador para referenciar este registo: http://hdl.handle.net/10071/29667
Registo completo
Campo DCValorIdioma
dc.contributor.authorMendes, D.-
dc.contributor.authorCorreia, S.-
dc.contributor.authorJorge, P.-
dc.contributor.authorBrandão, T.-
dc.contributor.authorArriaga, P.-
dc.contributor.authorNunes, L.-
dc.date.accessioned2023-11-20T13:06:09Z-
dc.date.available2023-11-20T13:06:09Z-
dc.date.issued2023-
dc.identifier.citationMendes, D., Correia, S., Jorge, P., Brandão, T., Arriaga, P., & Nunes, L. (2023). Multi-camera person re-identification based on trajectory data. Applied Sciences, 13(20), 11578. https://dx.doi.org/10.3390/app132011578-
dc.identifier.issn2076-3417-
dc.identifier.urihttp://hdl.handle.net/10071/29667-
dc.description.abstractThis study presents a trajectory-based person re-identification algorithm, embedded in a tool to detect and track customers present in a large retail store, in a multi-camera environment. The customer trajectory data are obtained from video surveillance images captured by multiple cameras, and customers are detected and tracked along the frames that compose the videos. Due to the characteristics of a multi-camera environment or the occurrence of occlusions, caused by objects such as shelves or counters, different identifiers are assigned to each person when, in fact, they should be identified with a unique identifier. Thus, the proposed tool tries to solve this problem in a scenario where there are constraints in using images of people due to data privacy concerns. The results show that our method was able to correctly re-identify the customers present in the store with a re-identification rate of 82%.eng
dc.language.isoeng-
dc.publisherMDPI-
dc.relationLISBOA-01-0247-FEDER-047155-
dc.relationinfo:eu-repo/grantAgreement/FCT/6817 - DCRRNI ID/UIDP%2F04466%2F2020/PT-
dc.relationinfo:eu-repo/grantAgreement/FCT/6817 - DCRRNI ID/UIDB%2F04466%2F2020/PT-
dc.rightsopenAccess-
dc.subjectPerson re-identificationeng
dc.subjectTrajectoryeng
dc.subjectMulti-cameraeng
dc.subjectObject detectioneng
dc.subjectObject trackingeng
dc.subjectComputer visioneng
dc.titleMulti-camera person re-identification based on trajectory dataeng
dc.typearticle-
dc.peerreviewedyes-
dc.volume13-
dc.number20-
dc.date.updated2023-11-20T13:05:05Z-
dc.description.versioninfo:eu-repo/semantics/publishedVersion-
dc.identifier.doi10.3390/app132011578-
dc.subject.fosDomínio/Área Científica::Ciências Naturais::Ciências da Computação e da Informaçãopor
dc.subject.fosDomínio/Área Científica::Engenharia e Tecnologia::Engenharia Eletrotécnica, Eletrónica e Informáticapor
iscte.subject.odsIndústria, inovação e infraestruturaspor
iscte.identifier.cienciahttps://ciencia.iscte-iul.pt/id/ci-pub-98448-
iscte.alternateIdentifiers.wosWOS:001095672300001-
iscte.journalApplied Sciences-
Aparece nas coleções:CIS-RI - Artigos em revistas científicas internacionais com arbitragem científica
ISTAR-RI - Artigos em revistas científicas internacionais com arbitragem científica

Ficheiros deste registo:
Ficheiro TamanhoFormato 
article_98448.pdf3,2 MBAdobe PDFVer/Abrir


FacebookTwitterDeliciousLinkedInDiggGoogle BookmarksMySpaceOrkut
Formato BibTex mendeley Endnote Logotipo do DeGóis Logotipo do Orcid 

Todos os registos no repositório estão protegidos por leis de copyright, com todos os direitos reservados.