Utilize este identificador para referenciar este registo: http://hdl.handle.net/10071/29184
Registo completo
Campo DCValorIdioma
dc.contributor.authorHamad, M.-
dc.contributor.authorConti, C.-
dc.contributor.authorNunes, P.-
dc.contributor.authorSoares, L. D.-
dc.date.accessioned2023-08-29T10:58:52Z-
dc.date.available2023-08-29T10:58:52Z-
dc.date.issued2023-
dc.identifier.citationHamad, M., Conti, C., Nunes, P., & Soares, L. D. (2023). Hyperpixels: Flexible 4D over-segmentation for dense and sparse light fields. IEEE Transactions on Image Processing, 32, 3790-3805. https://dx.doi.org/10.1109/TIP.2023.3290523-
dc.identifier.issn1057-7149-
dc.identifier.urihttp://hdl.handle.net/10071/29184-
dc.description.abstract4D Light Field (LF) imaging, since it conveys both spatial and angular scene information, can facilitate computer vision tasks and generate immersive experiences for end-users. A key challenge in 4D LF imaging is to flexibly and adaptively represent the included spatio-angular information to facilitate subsequent computer vision applications. Recently, image over-segmentation into homogenous regions with perceptually meaningful information has been exploited to represent 4D LFs. However, existing methods assume densely sampled LFs and do not adequately deal with sparse LFs with large occlusions. Furthermore, the spatio-angular LF cues are not fully exploited in the existing methods. In this paper, the concept of hyperpixels is defined and a flexible, automatic, and adaptive representation for both dense and sparse 4D LFs is proposed. Initially, disparity maps are estimated for all views to enhance over-segmentation accuracy and consistency. Afterwards, a modified weighted K-means clustering using robust spatio-angular features is performed in 4D Euclidean space. Experimental results on several dense and sparse 4D LF datasets show competitive and outperforming performance in terms of over-segmentation accuracy, shape regularity and view consistency against state-of-the-art methods.eng
dc.language.isoeng-
dc.publisherIEEE-
dc.relationinfo:eu-repo/grantAgreement/FCT/6817 - DCRRNI ID/UIDB%2F50008%2F2020/PT-
dc.relationPTDC/EEICOM/7096/2020-
dc.rightsopenAccess-
dc.subjectLight field over-segmentationeng
dc.subject4DK-means clusteringeng
dc.subjectLight field representationeng
dc.subjectSuperpixeleng
dc.subjectSupervoxeleng
dc.titleHyperpixels: Flexible 4D over-segmentation for dense and sparse light fieldseng
dc.typearticle-
dc.pagination3790 - 3805-
dc.peerreviewedyes-
dc.volume32-
dc.date.updated2023-08-29T11:56:33Z-
dc.description.versioninfo:eu-repo/semantics/publishedVersion-
dc.identifier.doi10.1109/TIP.2023.3290523-
dc.subject.fosDomínio/Área Científica::Ciências Naturais::Ciências da Computação e da Informaçãopor
dc.subject.fosDomínio/Área Científica::Engenharia e Tecnologia::Engenharia Eletrotécnica, Eletrónica e Informáticapor
iscte.subject.odsEducação de qualidadepor
iscte.subject.odsIndústria, inovação e infraestruturaspor
iscte.identifier.cienciahttps://ciencia.iscte-iul.pt/id/ci-pub-96802-
iscte.alternateIdentifiers.wosWOS:001028969300003-
iscte.alternateIdentifiers.scopus2-s2.0-85164290222-
iscte.journalIEEE Transactions on Image Processing-
Aparece nas coleções:IT-RI - Artigos em revistas científicas internacionais com arbitragem científica

Ficheiros deste registo:
Ficheiro TamanhoFormato 
article_96802.pdf9,01 MBAdobe PDFVer/Abrir


FacebookTwitterDeliciousLinkedInDiggGoogle BookmarksMySpaceOrkut
Formato BibTex mendeley Endnote Logotipo do DeGóis Logotipo do Orcid 

Todos os registos no repositório estão protegidos por leis de copyright, com todos os direitos reservados.