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Abstract— 4D Light Field (LF) imaging, since it conveys both
spatial and angular scene information, can facilitate computer
vision tasks and generate immersive experiences for end-users.
A key challenge in 4D LF imaging is to flexibly and adaptively
represent the included spatio-angular information to facili-
tate subsequent computer vision applications. Recently, image
over-segmentation into homogenous regions with perceptually
meaningful information has been exploited to represent 4D LFs.
However, existing methods assume densely sampled LFs and
do not adequately deal with sparse LFs with large occlusions.
Furthermore, the spatio-angular LF cues are not fully exploited
in the existing methods. In this paper, the concept of hyperpixels
is defined and a flexible, automatic, and adaptive representation
for both dense and sparse 4D LFs is proposed. Initially, disparity
maps are estimated for all views to enhance over-segmentation
accuracy and consistency. Afterwards, a modified weighted
K -means clustering using robust spatio-angular features is per-
formed in 4D Euclidean space. Experimental results on several
dense and sparse 4D LF datasets show competitive and outper-
forming performance in terms of over-segmentation accuracy,
shape regularity and view consistency against state-of-the-art
methods.

Index Terms— Light field over-segmentation, 4D K -means
clustering, light field representation, superpixel, supervoxel.

I. INTRODUCTION

THE required resolution (e.g., spatial, angular and tempo-
ral) and degrees of freedom in multimedia applications

are growing rapidly. Consequently, the associated computa-
tional complexity for processing the data is also increasing
significantly. 4D Light Fields (LFs) that capture the same scene
from different perspectives are a clear example of what this
trend is leading to [1]. To efficiently process the huge amount
of data, one possible approach is to reduce the number of
data units that need to be processed. This can be achieved
by grouping the locally homogenous data units according to
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some criteria into larger ones. This approach is known as
“image over-segmentation”. A recent trend in computer vision
is to process 2D images and 3D volumes at a higher-level
representation instead of at the pixel-level representation [2].
As an example, image over-segmentation can be used as
a pre-processing step in image compression [3], [4], object
tracking [5], object segmentation [6], [7], 3D semantic seg-
mentation [8] and saliency detection [9]. Considering that
image over-segmentation can be applied to 2D images and
3D volumes to facilitate subsequent applications, applying a
similar approach to 4D LFs would also make sense.

4D LFs indirectly describe the distribution of light rays in
free space by capturing the same scene from several points
of view [1], [10]. Depending on the LF capturing approach,
dense or sparse 4D LFs can be generated [1]. In dense LFs,
most of the objects exist in all LF views and, therefore,
LF processing or editing can be done on only a single LF view,
or a small subset of LF views, and then propagated into all
other LF views using, for example, LF view warping. In sparse
LFs, however, such possibility is limited by largely occluded
regions or regions that only appear in some LF views due
to the viewing angle. To handle these specific issues of sparse
LFs, all objects that appear in any LF view must be considered,
and an adequate propagation method must be used to ensure
accurate and angularly consistent LF processing or editing.
In both cases, due to the existing similarities within LF views,
LF over-segmentation can be exploited to group data units
within and across LF views. Therefore, a significant reduction
in the number of data units to be processed can be achieved
to facilitate subsequent tasks [7], [11], [12], [13]. 4D LF
over-segmentation should aim at not only spatial accuracy (i.e.,
adhering well to object boundaries and separating regions cor-
rectly), but also angular consistency (i.e., segmented regions
not changing abruptly when the viewpoint changes). Currently,
only a few methods for 4D LF over-segmentation are available
in the literature. These methods can be classified as being
either clustering-based methods [11], [14], [15], [16], [17] or
graph-based methods [18], depending on the used approach.
The clustering-based approach is adopted in this paper,
since it is widely used due to the superior results in
terms of accuracy and also due to the reduced computa-
tional complexity and memory usage, when compared to
graph-based ones [2], [19]. Although the available meth-
ods that tackled 4D LF over-segmentation challenges have
significantly improved over-segmentation angular consistency
(compared to simply applying a 2D method to each view
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independently), remaining limitations still need to be further
investigated.

Firstly, existing methods consider dense LFs (i.e., captured
with narrow baselines between views) and do not adequately
deal with sparse LFs with large occlusions (i.e., captured with
large baselines between views). For example, one reference
view (e.g., the central view) or the structure of the central
Epipolar Plane Image (EPI) (i.e., the unique 2D spatio-angular
slice of the LF typically containing a regular structure with
several oriented lines [20]) is used to perform 2D over-
segmentation. After that, the obtained segments are propagated
to other LF views. For this, it is assumed that each 2D
segment in the central view should have a corresponding
one in all other LF views (i.e., “full-sliced” property). This
assumption, however, may not always hold, notably for sparse
LFs. In the sparse LF case, some objects may not exist in all
LF views, either because they are occluded in some LF views
by foreground objects or because they fall outside the viewing
angle of those views.

Secondly, the spatio-angular LF cues, including depth or
disparity information (i.e., the displacement of a point between
different views, which is inversely proportional to the depth),
and 4D spatio-angular coordinates are not fully exploited
in most existing methods. The used disparity information
in some existing methods is either estimated for some pix-
els only (e.g., the clustering centroids) or for all pixels in
one reference view only (e.g., the central view) [11], [15].
Moreover, disparity information in some methods is used
to enforce a view consistent projection for the clustering
centroids, but not as a discriminative feature to guide the
over-segmentation (for instance, when color information is
insufficient to separate different regions [17]). Additionally, all
available clustering-based methods are still not 4D in nature,
meaning that the clustering is applied using 2D Euclidean
space without considering the angular dimensions, and the
centroids are fixed in one angular location. Lastly, none of the
previous methods (except in [17]) support adaptive clustering.

In this paper, a novel clustering-based 4D LF
over-segmentation method that tackles these limitations
is proposed. The contribution of this paper is four-fold:

• The definition of 4D hyperpixels for dense and sparse
LFs– The “hyperpixels” definition is provided to have
an entity that adequately reflects the high dimensional
nature of the basic element of 4D LF over-segmentation,
supporting flexible clustering/grouping criteria for both
dense and sparse LFs. The provided definition extends
the existing definitions in [11] and [15] as detailed in
Section III.

• Flexible, adaptive and consistent 4D over-
segmentation method for dense and sparse LFs–
In this paper, LF over-segmentation is applied using
a modified K -means clustering in the 4D hypercubic
domain that is adapted to LF content and fully
exploits the spatio-angular cues. As such, it is the only
over-segmentation method for LFs that is truly 4D in
nature. The differences between the proposed hyperpixel
over-segmentation method and other methods is detailed
in Section IV. Experimental results, including dynamic

results in the supplemental materials, show superior
performance when compared to existing methods.

• A 4D LF dataset of sparse LFs with a large absolute
disparity range– To validate our proposed method for
sparse 4D LFs quantitively, a dataset of 4D LFs including
non-Lambertian objects and complex texture regions that
mimic real images is generated. This is the first sparse 4D
LFs dataset that includes ground truth segmentation label
images, disparity, and depth maps for all LF views. It is
publicly available and can be used to qualitatively and
quantitively evaluate 4D LFs for several LF applications.

• Labeling–LF Angular Consistency (LLFAC) metric–
Existing LF view consistency metrics discard the large
occlusions in off-central views when projected into the
central view and, hence, may not fairly evaluate the view
consistency in sparse LFs. In this paper, we highlight
the importance of having metrics for sparse LFs that can
consider local angular consistency. Therefore, we adapted
the recently proposed metric that is applied for LF style
transfer applications [21] to evaluate labeling LF angular
consistency for dense and sparse LFs.

The remainder of the paper is organized as follows.
Section II briefly reviews the related work on LF over-
segmentation. Section III introduces the concept of hyperpixels
in 4D space and explains the differences with respect to
previous definitions. Section IV describes the proposed method
in detail, while in Section V its performance is evaluated
through a series of experiments. Finally, Section VI concludes
the paper with final remarks and proposes directions for future
work.

II. RELATED WORK

Image over-segmentation aims at providing a more mean-
ingful representation of an image and can reduce the number of
processing data units. Ren and Malik [22] first defined a group
of locally coherent pixels that share the same visual proper-
ties as “superpixels”. Subsequently, this concept has inspired
many researchers to propose various 2D over-segmentation
methods, of which a comprehensive review can be found
in [2]. More recently, deep learning was exploited in 2D
image over-segmentation, leading to a further improvement in
accuracy [23], [24]. However, applying 2D over-segmentation
methods to each LF view independently will not ensure LF
angular consistency, which is crucial for many applications.
The superpixel concept has also been extended to consider 3D
volumes [25], videos [26] and higher-dimensional visual data,
such as 4D LFs, where over-segmentation angular consistency
is particularly important.

In this section, the few available 4D LF over-segmentation
methods are briefly reviewed. Current 4D LF over-
segmentation methods can be classified as clustering-based or
graph-based, depending on the approach used to divide 4D
LFs into homogeneous regions.

A. Clustering-Based 4D LF Over-Segmentation

In this class, 4D LFs are divided into a certain number of
homogeneous clusters of pixels with similar sizes using the
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K -means clustering technique. Currently, all available methods
in this category start the clustering process by initializing the
centroids only in the central view of the LF.

Hog et al. [11] proposed a fast method that groups light rays
of similar color in an LF into what they defined as “superrays”
using 2D K -means clustering. The angular consistency is
enforced by projecting the superrays in the central view into all
other views and vice versa, using the disparity values of their
centroids. Notice that the disparity values are estimated only
for the centroids in the central view in the initial position of
the centroids to apply the projection step and are not included
as a clustering feature. Therefore, a cleaning step is needed to
correct wrongly labeled or unlabeled pixels due to inaccurate
projection or clustering, especially in largely occluded regions.
Later, the authors extended their work to handle LF videos by
also considering the temporal dimension [27].

Zhu et al. [15] defined the concept of 4D LF SuperPixel
(LFSP) and a metric for evaluating LFSP angular consistency
(i.e., the self-similarity metric). The method proposed in [15]
to generate LFSPs relies on segmenting the central view
firstly with a 2D K -means clustering algorithm, assisted by
the disparity feature only for the central view. After that,
superpixels are projected to other views using the centroids
disparity values. Finally, an optimization stage is needed
to ensure the EPI space regularity. In this work, the “full-
sliced” property is assumed, which can represent a significant
limitation for sparse LFs.

Khan et al. [16] proposed a novel View-Consistent
Light Field Superpixel (VCLFS) segmentation. Initially, the
over-segmentation is applied in the EPI space for the central
horizontal and central vertical EPIs independently, by con-
sidering that each pair of lines defines a 2D segment. After
that, a 2D K -means clustering is applied after combining the
horizontal and vertical EPIs into the central view. Labels are
then propagated to all off-central LF views using per-pixel
disparity. Although the disparity for all views is used during
the clustering, relying on EPI regularity can limit the VCLFS
method performance for sparse LFs (e.g., due to their irregular
EPI structure).

Recently, Hamad et al. [17] proposed an adaptive LF Over-
segmentation (ALFO) method based on modified 2D K -means
clustering. In the ALFO method, the weights applied to
the different features for clustering are adjusted adaptively
based on the image content. Hence, the balance between
regularity, compactness, and angular consistency is improved.
In this method, per-pixel disparity is required as input and
exploited during the clustering. Although ALFO has shown
outperforming performance, it still does not fully exploit the
spatio-angular cues, this fact will be further discussed in
Section IV-F. Moreover, as in the previous methods, only the
central view is used to initialize the centroids, which is not
adequate for sparse LFs and largely occluded regions.

B. Graph-Based 4D LF Over-Segmentation

In this class, LF over-segmentation is considered as a
graph-partitioning task. More precisely, an undirected graph
is created from a 4D LF by considering every single pixel

in a 4D LF as a graph node. Afterwards, according to the
edge weights between adjacent nodes, the graph is cut into
sub-graphs with each sub-graph representing a 4D segment.
Generally, applying graph optimization on a huge number
of pixels, may require a long execution time and extensive
consumption of resources.

Li et al. [18] proposed a Hierarchical and View-invariant
LF Segmentation (HVLFS) method. By creating a weighted
undirected 4D graph from a 4D LF, the over-segmentation
is achieved by maximizing the graph entropy in the 4D LF
domain. In this method, different features are used to guide
the over-segmentation, such as color, depth and texture. The
entropy rate for the over-segmentation is measured in the EPI
space to ensure angular consistency. This method generates
subgraphs with different sizes according to the user input.
However, some limitations remain regarding the need for
proper normalization of the used weights for optimization
to robustly fit different LF datasets. Moreover, since angular
consistency is handled by tracking the EPI structure, the
method has been shown to fail when applied to sparse 4D
LFs [18].

III. HYPERPIXELS DEFINITION

A pixel (short for “picture element”) is the fundamental
unit in 2D images. Similarly, the fundamental unit of 3D
volumes is called a voxel (short for “volume element”).
Given the fact that these low-level representations do not
necessarily have a perceptual meaning [22], a more com-
pact and natural representation is desired. Therefore, locally
coherent pixels/voxels in 2D/3D space can be grouped into
superpixels /supervoxels [25], respectively, according to some
criteria. The main objective is to provide a more meaningful
representation and to reduce the number of processing data
units. Recently, a froxel was defined to describe an element
of a frustum-aligned voxel grid, by using depth and camera-
setup-dependent discretization of the view frustum [28].

For 4D LFs, the concepts of superray [11] and LFSP [15]
were proposed. These concepts, however, still have some
limitations that prevent them from being truly analogous to
the superpixel and supervoxel ideas but extended for 4D LFs.

In this paper, we try to overcome such limitations by
introducing the concept of “hyperpixel”, simply defined as “a
group of similar pixels in the discrete 4D LF space”. The
criteria used to define what are similar pixels will depend on
the specifics of the over-segmentation method adopted. The
differences with respect to superrays and LFSP are described
as follows.

The authors in [11] defined superrays as “groups of rays
of similar color coming from the same scene area”. This
definition implies a representation in the continuous 3D scene
space, although the authors used it interchangeably to refer
to its corresponding projection in the discrete 4D LF space
(x, y, u, v). Moreover, in this definition, the authors impose
the following constraint on the grouping of rays: the rays in
each superray must have a similar color. The goal of our pro-
posal is to have an entity defined purely in the discrete 4D LF
space without imposing any constraint on the similarity criteria
used for grouping. With the proposed definition of hyperpixels,
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Fig. 1. Examples of regions only visible in some views. The fire extinguisher
is occluded by the blue car in view (5, 9). The blue car is not visible in view
(5, 1) because it is outside the viewing angle of this view. This scene is one
of the generated sparse 4D LFs in our dataset.

Fig. 2. Visualization of non-existent or occluded regions in the central view,
i.e., view (5, 5), that are visible in other LF views and vice versa. a) The part
of the sofa that can be seen through the hole of the chair armrest in view
(9, 9) is occluded in view (5, 5) ; b) The bottom part of the black and white
carpet appears in view (5, 5) but is not visible in view (1, 1) because it falls
outside the viewing angle of this view. These scenes are from our sparse 4D
LF dataset.

pixel grouping can be performed using a variety of pixel
features (e.g., texture, depth, 4D spatial-angular coordinates,
etc.). Obviously, the pixel grouping can still be performed
using only the color feature, as is the case of superrays. The
choice of grouping criteria to be used depends on the specifics
of the over-segmentation method adopted.

According to [15], “LFSP is a light ray set which contains
all rays emitted from a proximate, similar and continuous sur-
face in 3D space”. This definition also implies a representation
in the continuous 3D scene space, although the authors of [15]
also used it interchangeably to refer to its corresponding
projection in the discrete 4D LF space (x, y, u, v). Moreover,
in this definition, the authors impose the following constraint
on LFSPs: “there are 2D slices of LFSP in all views of light
field in free space (i.e., without occlusion)”. On the other hand,
hyperpixels are not required to have 2D slices in all LF views,
even for objects in free space (i.e., without occlusion). This
is particularly important when considering sparse LFs, where
it is possible that some objects in free space are only visible
in some views and large occlusions can exist (see Fig. 1).
Obviously, our definition would also support the case in which
a given object in free space is visible in all LF views; in that
situation, a 2D slice would exist in all views, as in LFSP.
In Fig. 2, an example is shown of how hyperpixels can have
slices in some views and not be present in other views if no
corresponding pixels exist in those views.

To sum up, we consider that the hyperpixel concept reflects
adequately the high dimensional nature of the basic element
of 4D LF over-segmentation and it is sufficiently generic
and flexible to comprise the 4D projections of both existing
superrays and LFSPs definitions.

IV. PROPOSED 4D LIGHT FIELD OVER-SEGMENTATION

This paper proposes a flexible, adaptive, and view-consistent
4D over-segmentation method for dense and sparse static

TABLE I
MAIN NOTATIONS USED IN THIS PAPER

LFs. According to the hyperpixel definition, our proposed
LF over-segmentation method aims at grouping similar pixels
in 4D space into hyperpixels. For grouping, several features
are considered (i.e., 4D position, color and disparity values).
To achieve that, K -means clustering is applied in 4D space.
In summary, given a 4D LF scene, disparity maps for all LF
views and the hyperpixel size, the proposed method undergoes
four main steps (see Fig. 3), where each step is detailed in the
following subsections:
1. Initial clustering centroids (i.e., the hyperpixel center of

mass in 4D space) are first selected by considering the
central view and largely occluded regions from other views.
Each centroid is characterized by several features.

2. K -means clustering is applied in 4D LF space and all pixels
are labeled iteratively to minimize the within-hyperpixel
variance.

3. Centroids color, 4D position and disparity features are
adjusted at each iteration during the clustering.

4. Clustering weights are adapted after each iteration.
Steps 2, 3 and 4 are repeated until convergence is reached.

In this paper, we assume a regular arrangement of cameras
with a parallel optical axis and uniform camera baseline
and focal length. However, the proposed method can also
be extended and applied to other camera arrangements by
adjusting the used equations accordingly. The main notations
used in this paper are listed in TABLE I.

A. Occlusion-Aware Centroids Initialization

The first step in the proposed hyperpixels over-segmentation
method is to select initial centroids to guide the 4D cluster-
ing process. Different from other available clustering-based
LF over-segmentation methods, where the centroids are ini-
tialized in a pre-defined reference view (e.g., the central
view), the proposed method enables occlusion-aware centroids
initialization. Initializing centroids only in the central view
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Fig. 3. The main steps of the proposed 4D LF over-segmentation method. Given a 4D LF and the corresponding disparity maps for all views, initial centroids
characterized by distinct features are assigned in the reference view/views. Next, hyperpixels are generated by iteratively applying 4D K-means clustering,
including pixel labeling, centroids adjustment and clustering weights adaptation, until convergence is reached.

Fig. 4. Example of occluded regions in sparsely sampled LFs. a) The central
view; b) 4 reference corner views; c) Occluded regions (black regions) in each
view; d) Visibility masks for corner views after redundancy removal. Only the
central view and the black regions in the corner views as in (d) will be used
to initialize unique centroids to consider the largely occluded regions.

may generate inaccurate over-segmentation for occluded or
non-existent regions in the reference view due to different
view perspectives; this can be critical due to largely occluded
regions in sparse LFs. Therefore, to handle this problem, the
four corner views are considered along with the central view
for centroid initialization. These extreme corner views are
selected since they typically contain all LF information.

To detect the small color differences, before initializing the
centroids, the input LF views are converted to the CIELAB
color space, which is widely used for image segmentation
since it mimics human visual perception. To avoid biased
clustering, the LF views and the disparity maps are nor-
malized according to the min-max normalization method as
in [17]. Given the normalized inputs, the centroids are initially
distributed in the central view over a uniform 2D square
grid with step size, Hsi ze (a.k.a. hyperpixel size). Afterwards,
to detect the occluded or non-existent regions in the central
view that are visible in any corner view, the central view is
warped to the corner views by using its disparity map. All
the occluded regions in each corner view are represented by a
binary visibility mask where the occluded regions are assigned
the value 0 (black pixels in Fig. 4c).

To avoid redundancy, when initializing new centroids in the
corner views, the regions that represent the same occluded 3D
points in more than one corner view are kept only in one corner
view and discarded from others (see, for example, the ovals
with similar color in Fig. 4b). To achieve that, each corner

view is iteratively warped into other corner views using its
disparity map. Afterwards, pixels in the current corner view
that overlap with the projected pixels from other corner views
are kept only in the visibility mask of the current corner view
and discarded from the visibility masks of other corner views.
Moreover, the connected pixels (with 8-direction connectivity)
in the occluded regions that are smaller than Hsi ze, are also
discarded. Finally, new centroids are initialized uniformly only
in the remaining regions in the corner views that do not have
corresponding centroids in the central view as applied earlier
to the central view. After initializing the centroids in the central
and corner views, that represent the hyperpixels, each pixel in
4D space will be clustered to the appropriate hyperpixel as
explained in the next step.

B. 4D LF Pixels Label Assignment

In this step, each pixel in the 4D LF is labeled and assigned
to the corresponding hyperpixel based on the similarity in
the used clustering features. To exploit LF cues during the
clustering, each pixel is characterized by a feature vector
[x, y, u, v, l, a, b, d] according to its position in the 4D space,
where (x, y) are the spatial coordinates, (u, v) are the angular
coordinates, (l, a, b) are the color components in the CIELAB
color space, and d is the disparity value. To assign labels for
all pixels in 4D LF, a modified version of the K -means clus-
tering algorithm is used by considering an adaptive weighted
clustering in 4D space.

In 4D LFs, considering cameras with a parallel optical
axis, the scene is captured from different angular perspectives
hence, views with spatial shifts are generated. These shifts
lead to the appearance of slanted lines in the EPI space, as can
be seen in Fig. 5 where the EPI slices with yellow and red
borders are generated by first stacking the central horizontal
and vertical LF views, respectively. Different from voxels in
3D space, the corresponding pixels that represent the same 3D
point in 4D space have a spatial shift across views, horizontally
and vertically, according to the disparity of each object in the
scene.

Therefore, to support truly 4D clustering, the centroids
are projected into each LF view to enforce the cross-view
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Fig. 5. In 4D LFs, each LF view (i.e., a slice of 4D LF in a particular
angular plane (u, v)) captures the scene from a different view perspective,
resulting in shifted light rays across views as can be seen in the yellow and
red bordered EPIs shown below and to the left of the central view.

Fig. 6. To ensure consistency with respect to the EPI slanted nature, centroids
are projected spatially during the 4D clustering. a) 2D view overlayed
with hyperpixel borders; b) A stack of horizontal EPIs when projecting the
centroids into each view.

consistency according to the slanted nature of the EPIs as
in Fig. 6. Notice that the EPIs in Fig. 6 are generated by
stacking the 4D LF views in serpentine order (to maintain
connectivity in the EPI lines for better visualization), resulting
in 2D horizontal EPI slices. Due to the differences in sampling
the angular and spatial dimensions (especially for sparse LFs),
a sampling compensation is needed. This can be achieved here
by shifting the LF views using their disparity maps during
the clustering to make the corresponding pixels aligned as
described below.

More precisely, the 4D K-means clustering is applied in
each view by spatially projecting the centroids, using their
disparities, from their current angular position into each view
without changing their angular dimensions, as in (1):

xc′ = x (u′,v′)
c = x (u,v)

c + d(u,v)→(u′,v′)
hor,c ,

yc′ = y(u′,v′)
c = y(u,v)

c + d(u,v)→(u′,v′)
ver,c , (1)

where (xc′ , yc′) are the spatial coordinates of the projected
centroid, c′, using the disparity of the centroid located in (u, v)

view, and d(u,v)→(u′,v′)
hor,c and d(u,v)→(u′,v′)

ver,c are, respectively, the
horizontal and vertical disparities from (u, v) view to (u′, v′)

Fig. 7. Example of spatial projection of a hyperpixel centroid from view
(u, v) into view (u′, v′) using the horizontal and vertical disparity values.

view. Considering that the used disparity estimation methods
for densely and sparsely sampled 4D LFs generate per-pixel
disparities from each view to its right horizontal adjacent
view [11], [15], [17], the disparity value is here computed
as in (2):

d(u,v)→(u′,v′)
hor,c = dc ×

(
u′

− u
)
,

d(u,v)→(u′,v′)
ver,c = dc ×

(
v′

− v
)
, (2)

where dc is the disparity of the centroid, c, from each view
to its right horizontal adjacent view and (u, v) are the angular
coordinates where the centroid is located. Notice that in (2)
a uniformly sampled camera setup is considered. However,
if the camera baselines are different for horizontal and ver-
tical directions, then a consideration of camera parameters is
needed [15]. When centroids are projected into other views,
their spatial position (xc′ , yc′) may belong to R2, however,
color and disparity values in the used datasets are only
available for integer positions. Therefore, the coordinates of
the projected centroids are rounded to ensure integer indexing
belonging to Z2. More precisely, for projection, unnormal-
ized position and disparity values are used. However, during
4D clustering and weights adaptation steps, the normalized
unrounded values are used.

Due to the high dimensionality of 4D LFs and since most
hyperpixels usually have a local slice in each view, the
searching of the nearest centroid is applied, as proposed for
2D images [29], in a small searching window, �i , around each
centroid in each view as defined in (3):

�i = (4 × Hsi ze)
2 , (3)

where i ∈ {1, . . . , K }, Hsi ze is the hyperpixel size as in Fig. 7.
Let H = {H1, . . . , HK } represent the set of all hyperpix-

els where K is the number of hyperpixels. This way, the
over-segmentation can be considered as an energy minimiza-
tion problem in (4):

E = arg min
H

K∑
i=1

∑
p∈Hi

Dw (p, ci ), (4)

where p is a pixel in 4D space that belongs to hyperpixel Hi ,
Dw is the weighted distance, and ci is the centroid of Hi in
4D space. In this step, each pixel in �i is assigned to the
“nearest” hyperpixel based on, Dw, as in (5)-(10):

Dw (p, c) = wp × D2
p + w

l
× D2

l

+ wa × D2
a + wb × D2

b + wd × Dd , (5)
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where wp is the position clustering weight, wl , wa , wb are
the color clustering weights, wd is the disparity clustering
weight and Dp, Dl , Da , Db, Dd are the position, color and
disparity distances between each pixel p and a target centroid
c, respectively, Dd here is not squared to impose a larger
penalty on the disparity feature as in [17]. The distances in
this paper are computed as follows:

Dp(p, c)

=

√
(xp − xc′)2 + (yp − yc′)2 + (up − uc)2 + (vp − vc)2

8 × H2
si ze + (Nu − 1)2 + (Nv − 1)2

,

(6)

Dl(p, c) =

√
(lp − lc)2, (7)

Da(p, c) =

√
(ap − ac)2, (8)

Db(p, c) =

√
(bp − bc)2, (9)

Dd(p, c) =

√
(dp − dc)2, (10)

where p represents each pixel in 4D space that belongs
to the searching window centered on centroid c. Further-
more, xc′ , yc′ are the spatial coordinates of centroid c
when projected into the view of p with angular coordi-
nates (up, vp). Additionally, (uc, vc) is the original angular
coordinate of centroid c without projection and Nu , Nv

are the horizontal and vertical angular dimensions, respec-
tively. The projected spatial position is used here to enforce
cross-view consistency by considering the disparity between
views and to compensate for the difference in sampling
spatial and angular dimensions. To normalize the position fea-
ture, Dp is divided by

(
8 × H2

si ze + (Nu − 1)2
+ (Nv − 1)2),

by considering the minimum distance to be zero and√
8 × H2

si ze + (Nu − 1)2
+ (Nv − 1)2 is the maximum dis-

tance in 4D space. In the first iteration, all the weights are
initialized with the same value, equal to 1/ |W | , where W ,
is the set of clustering weights {wp, wl , wa , wb, wd} and |W |

is the number of the used clustering weights. As shown in [17],
the values of the initial weights do not significantly impact the
final clustering weights. Notice that the used weights must be
in the (0, 1) range, and

∑
w f ∈{p,l,a,b,d} = 1, in each iteration.

After assigning labels to all the pixels in 4D LFs, centroids
are adjusted in terms of their features according to the current
iteration as described in the next step.

C. Centroids Adjustment

In this step, the clustering features vector of each centroid
c is adjusted iteratively until convergence is reached. After
each iteration, the color feature values, lc, ac, bc, and the
4D position features, xc, yc, uc, vc, of each centroid are
adjusted by the mean values of all pixels that belong to the
corresponding hyperpixel, Hi , where i ∈ {1, . . . , K } as (11):

tc =
1

|Hi |

∑
p∈Hi

tp, (11)

where tp is the feature value of a pixel, p, in 4D space,
and t ∈ {x, y, u, v, l, a, b}. Notice that, different than the

existing LF over-segmentation methods, the proposed method
also adjusts the angular coordinates. This is useful especially
for the objects that exist only in some LF views and are
occluded (partially or completely) or non-existent in other
views.

Finally, to ensure robust centroid projection in the next
iteration, and similar to [17], the disparity value of each
centroid, dc, is updated using the actual disparity value of the
centroid updated 4D position (rounded to integer positions)
from the input disparity maps, d, as in (12):

dc = d (xc, yc, uc, vc) . (12)

After adjusting the centroids, the clustering weights still
need to be adapted according to the current iteration; to avoid
biased or non-optimal over-segmentation as explained in the
next step.

D. Clustering Weights Adaptation

As the last step in each iteration and after the centroids
are adjusted, the clustering weights are adapted according
to the LF content and the current iteration. This step is
beneficial especially when the features differ in their ranges.
Moreover, selecting certain fixed values for clustering weights
that suit different datasets without considering their content
is a challenging, time-consuming task and may generate non-
optimal over-segmentations. Since the use of adaptive weights
has been shown to improve over-segmentation performance
in [17] and [30], a similar technique is exploited here.

As in [30], the feature discriminability principle states that
the features with the smaller within-cluster variances (i.e.,
the total sum of the feature distances from each pixel to its
centroid in all hyperpixels) are more discriminative. Hence,
it is beneficial to assign a larger weight to these features to
properly influence the over-segmentation. The discriminability
of each clustering feature can be computed by finding the
normalized within-cluster variance for each feature, f , as
in (13):

W V f =

K∑
i=1

∑
p∈Hi

D f (p, ci )
2, (13)

where K is the number of hyperpixels, p is a pixel in 4D
space that belongs to hyperpixel Hi , ci is the centroid of Hi
in 4D space, D f is the feature distance from each pixel, p, and
the centroid, ci , and f ∈ {p, l, a, b, d}. Unlike the technique
in [30], but similar to [17], in this paper, the input 4D LF
image and disparity maps are normalized before clustering.
Therefore, we did not divide W V f by the feature ranges, which
is needed in [30] to normalize W V f . After computing W V f for
each feature, the clustering weights are updated by assigning
higher weight values to the features with smaller W V f values
using (14):

w f =
1∑

j∈{p,l,a,b,d}

(
W V f

/
W Vj

) 1
|W |−1

, (14)

where j represents each clustering feature and |W | is the
number of the used clustering weights.
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E. Convergence Criterion

After applying the above steps, the iterative 4D clustering
will continue until convergence or the maximum number of
iterations is reached. To check for convergence, after each
iteration, the average displacement of all centroids, Davg ,
is computed by finding the 4D Euclidean distance between the
previous centroid position in 4D space and the current 4D posi-
tion. In this paper, we set the maximum number of iterations to
20 as will be discussed in the following section. Additionally,
to improve the performance (in terms of the needed number of
iterations), we considered a convergence threshold for Davg of
0.7% of Hsi ze (this value has been determined empirically after
exhaustive testing). By choosing this threshold, we noticed,
especially in dense 4D LFs, that the over-segmentation can
converge before reaching the maximum number of iterations
without a significant difference in accuracy.

F. 4D Versus 2D K-Means

In this section, the differences between the proposed 4D
K -means clustering method and the 2D K -means cluster-
ing used in most of the available 4D LF over-segmentation
clustering-based methods are briefly explained.

In the proposed method the centroids are initialized, before
clustering, in the central view and in occluded regions in off-
central views, as explained in Section IV-A. Other methods
initialize centroids only in the central view, e.g., [11] and [17].

Besides the color feature, in the proposed method the
4D pixel position and disparity features are also considered
during the clustering for all LF views. Other methods, either
do not use disparity information as a clustering feature but
merely for enforcing consistent centroids projection [11],
or do not exploit the angular dimensions during the cluster-
ing [11], [15], [16], [17].

During the clustering, the centroids positions can be
adjusted not only spatially but also angularly. In all other
available methods [11], [15], [16], [17] the centroids are
fixed angularly. Moreover, in the proposed method, disparity
values are adjusted from the input disparity maps for each
centroid after updating its 4D position. However, in most
available methods, centroid disparity values are either never
adjusted even when a centroid changes its position [11], or are
adjusted to the mean disparity value of all pixels in the LF
segment [15], [16].

The proposed energy minimization function considers clus-
tering weights for each feature to either penalize or increase its
importance, with the weights being adapted to the LF content,
similar to ALFO [17], which does not happen in other methods
that rely on fixed values for clustering weights.

Consequently, the proposed method is truly 4D in nature
and the creation of hyperpixels is based on grouping similar
pixels in the 4D LF space. All other LF over-segmentation
methods rely on projecting 2D superpixels in the center view
to other LF views and then applying a final optimization.

V. EXPERIMENTAL RESULTS

To evaluate the proposed 4D LF over-segmentation method,
from here on simply called hyperpixels method, in various

TABLE II
IMAGE DATASETS USED IN THE EXPERIMENTAL RESULTS

aspects, both dense and sparse, synthetic and real world
LF datasets are used. Additionally, to validate the results,
qualitative and quantitative comparisons with state-of-the-art
methods are presented. In the following sub-sections, the used
4D LF datasets, benchmark methods to compare with and the
used evaluation metrics are detailed. To clearly notice cross-
view consistency, we highly encourage the reader to see the
extended results on entire LFs in the supplemental materials
for dynamic visualizations available online (please note that
not all LF views are presented in this paper but can be found
in the supplemental materials).1

A. Used 4D LF Datasets and Experimental Setup

In this paper, three different datasets are used to generate
hyperpixels for densely and sparsely sampled LFs as shown in
Table II. In the case of dense LFs, the synthetic HCI 4D LF
dataset [31], which contains Ground Truth (GT) disparity maps
and 4D LF segmentation labels, is used. Moreover, only the
central 11×11 views of the real world EPFL MMSPG dataset
captured with a Lytro Illum camera [32] are used to eliminate
the vignetting effects in corner LF views (i.e., darkening of
the edges of the captured microimages).

For sparse 4D LFs, there is currently no available 4D LF
sparse dataset with GT segmentation labels, GT disparity
and depth maps for all LF views, which are needed for
quantitative evaluation. For this reason, by using Blender
software with Cycles rendering [33], LF Blender tools pro-
posed by Honauer et al. [34], and some publicly available
3D models in [35], [36], and [37], we generated a new
synthetic dataset accompanied by GT disparity maps, depth
maps and segmentation labels, in order to enable the numerical
evaluation. Our dataset has disparity values between adjacent
views within the range [−125, 125] and consists of 11 4D

1Higher quality versions at https://github.com/MaryamHamad/Hyperpixels
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Fig. 8. Average quantitative evaluation of used test 4D LFs with different
hyperpixel sizes and number of iterations.

LFs with (9 × 9) angular resolution and either (512 × 512) or
(1280 × 720) spatial resolution. Our dataset contains several
objects and challenging regions for segmentation, for exam-
ple, non-Lambertian objects (e.g., glass and metal), complex
textures, uneven lighting and overlapping objects with sim-
ilar colors. As such, it can be used to evaluate various LF
applications (the IT-4DLF dataset is available for download at:
http://www.img.lx.it.pt/IT-4DLF/). In this paper, 7 challenging
sparse 4D LFs and 7 dense 4D LFs from other commonly
used datasets are used.

It is worth noting that our proposed method relies neither
on any experimentally set clustering weights nor on any
post-processing step. Most existing methods require cleaning
or optimization as a post-processing step to fill unlabeled
pixels due to inaccurate over-segmentation or to regularize
the over-segmentation results across views. Like in existing
clustering-based LF over-segmentation methods, the hyper-
pixel size is assigned by the user according to the desired
application. It was observed that using adaptive 4D clustering
enhances over-segmentation convergence [17]. The proposed
hyperpixels method converges most of the time within 10 iter-
ations. However, the maximum number of iterations was
chosen to be 20 to ensure accurate labeling even for complex
scenes. This value was selected after comparing the average
performance for the used test images generated after 10,
20, 30 and 40 iterations. Since there was no significant
improvement in the performance after 20 iterations, as shown
in Fig. 8, this value was chosen as a convergence criterion. Our
implementation is not optimized yet, but it has been shown in
the literature [2], [10], [16] that K -means clustering can be
parallelized for fast over-segmentation, which may be required
for some applications.

B. Benchmark Methods and Experimental Parameters

In this paper, we compared our results with all the existing
4D LF over-segmentation methods listed in Section II namely:
the Superray [11]; LFSP [15]; VCLFS [16]; HVLFS [18]; and
ALFO [17] methods. The used software for these methods was
obtained and used as detailed in [17]. To generate the superrays
in [11], numerous parameters are required as input, such as

the disparity range between adjacent views, and compactness
weight (e.g., a weight that controls superrays compactness).
The disparity range is obtained from the estimated disparity
in [38] and [39] (as used for our method), for each test image
independently and the compactness weight is set to 10, as it
shows superior performance in [29], for different superrays
sizes. As input to the LFSP method [14], [15], different
methods are used by the authors of the LFSP method for
estimating only the central disparity map without significantly
affecting the performance, such as [40] and [41]. In this paper,
the input disparity map of the central view that is used for the
LFSP method is the same as the one used for our hyperpixels
method for dense and sparse LFs. For the VCLFS [16], the
maximum disparity parameter is merely changed according to
each LF and this value is set using the same disparity maps that
are used for our method. For the HVLFS method [18], we only
have results provided by the author for dense synthetic LFs
and superpixel size belonging to [20, 45]; hence, we could not
compare this method with sparse LFs or compute its execution
time. For ALFO method [17], disparity maps for all 4D LF
views are required as input. Therefore, the used disparity maps
for our method are also used for ALFO method.

Regarding the input hyperpixel size (a.k.a. cluster/segment
size), Hsi ze, for dense and sparse LFs, several sizes were tested
on the HCI and our generated datasets (i.e., 20, 25, 30, 35,
40). For the MMSPG dataset, since there is no labeling GT
available, only Hsi ze = 20 is presented.

C. Evaluation Metrics

To generate the quantitative results, the evaluation met-
rics comprehensively described for 4D LF in [17] are used.
Namely, the Achievable Accuracy (AA), Boundary Recall
(BR), Under-segmentation Error (UE), Compactness (CP),
Self-Similarity error (SS), and number of Labels per Pixel
(LP). Notice that the existing consistency metrics used in [17]
do not adequately consider regions that exist in other views but
are occluded or non-existent in the central view, especially in
sparse LFs. To overcome this limitation, the recently proposed
LF Angular Consistency (LFAC) metric for style transfer
applications [21] is adapted and modified to compute the
consistency of sparse LF over-segmentation more accurately.
Different from LFAC [21], where the consistency of RGB
stylized LFs (i.e., composed LF in the style of another image)
is compared with an original one and where the estimated
disparity of the original image is used, in this paper, a labeled
4D LF is used to compute the angular consistency assisted
with the GT disparity maps and segmentation label images
for all LF views.

Labeling–LF Angular Consistency (LLFAC)– Given a
GT 4D LF disparity map, DGT , and GT segmentation label
images, LGT , the angular consistency is computed by ini-
tially grouping the hyperpixels into object-level using LGT .
To achieve that, each hyperpixel in the hyperpixel labeled
image, L , is assigned to the label of the segment in LGT that
has the largest overlap with the current hyperpixel. Afterwards,
the local angular variance map, σ 2 (L), is initially computed
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Fig. 9. Estimated disparity for sparse LFs: a) The central LF view for which
the disparity estimated; b) GT disparity with range [−35.3, 8.7]; c) Results
by using the deep learning based method in [39]; d) Results by applying
our proposed modification on [39] to improve the accuracy and angular local
consistency.

Fig. 10. Quantitative comparison on our proposed method using different
estimated disparities namely, Estimated Disparity using (ED-original) [39];
modified Estimated Disparity (ED-modified); Ground Truth Disparity (GTD).
Better disparity maps can significantly improve the hyperpixels performance.

as follows [21]:

σ 2 (L) =
1

Nu×N v

M,N∑
u,v

1∣∣Cu,v

∣∣
×

 ∑
u′,v′∈Cu,v

occu,v
u′,v′

(
w

u,v
u′,v′

(
Lu′,v′

)
− Lu,v

)2

 ,

L AC (L) = 10 log10

(
r2

/
σ 2 (L)

)
, (15)

where Nu, Nv are the number of horizontal and vertical views,
Cu,v is the closest 8 neighboring views of labeled view Lu,v ,
occu,v

u′,v′ represents per-pixel weights where occluded regions
between two adjacent views are set to 1 and 0 elsewhere,
w

u,v
u′,v′ represents the warping function as explained in [21],

to warp a given view using a disparity map between view

Fig. 11. Example of inaccurate over-segmentation of a non-Lambertian region
of the nutcracker using different disparity maps during the clustering: a) Using
estimated disparity; b) Using ground truth disparity. Accurate disparity maps
can improve the over-segmentation performance.

Fig. 12. Quantitative comparison of our proposed method with and without
adjusting the centroids angular location during the clustering for sparse LFs.

Lu′,v′ and Lu,v , Lu,v , is the mean of all the LF neighboring
views warped into view Lu,v , r is the pixels values range, and
σ 2 (L) is the mean of σ 2 (L). A higher LLFAC indicates better
angular consistency.

D. Disparity Maps Estimation

As input, the proposed hyperpixels method requires dis-
parity maps for all 4D LF views, to fully exploit LF cues
during the 4D clustering. In the case of dense LFs, the recently
proposed view-consistent depth estimation method in [38] is
used. This method [38] relies heavily on the EPI structure and
is designed only for dense LFs. In the case of sparse LFs, to the
best of the authors’ knowledge, only the deep learning based
disparity estimation method proposed in [39] can estimate
disparity (for all dense and sparse LF views, considering and
ensuring cross-view consistency), with promising performance
and has an open-source software. This method relies on
initially estimating the corner views using a fine-tuned Flow
Net 2.0 [42], [39]. Afterwards, the inner views disparity maps
are synthesized and propagated using an occlusion-aware soft
3D reconstruction method proposed in [43] based on the corner
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Fig. 13. Average quantitative evaluation on all 4D LFs of the dense HCI 4D LF dataset listed in Table II for different 4D LF over-segmentation methods.

Fig. 14. Qualitative results using the densely sampled HCI 4D LF dataset. Challenging regions are selected to evaluate the robust balancing between spatial
accuracy, compactness and cross-view consistency. For each LF, the central view, the vertical and horizontal EPIs are presented, respectively. As can be seen,
our results adhere well to object boundaries and can accurately segment overlapping objects as in (b) and (c) and maintain compact and consistent across all
views (as can be seen in the supplemental dynamic results). Hsi ze = 20.

views. This method can generate accurate disparity maps for
LFs with limited disparity ranges. However, the accuracy
of the estimated disparity is significantly negatively affected

when large displacements exist between the corner views,
especially for sparse LFs, which can dramatically affect the
over-segmentation results. The authors extended this method



HAMAD et al.: HYPERPIXELS: FLEXIBLE 4D OVER-SEGMENTATION FOR DENSE AND SPARSE LFs 3801

Fig. 15. Qualitative results using the densely sampled MMSPG 4D LF dataset. For each LF, the central view, the vertical and horizontal EPIs are presented,
respectively. Regardless of the noise that exists in real LF views and non-even lighting, our results can adhere to object boundaries and can accurately
segment challenging cases such as non-even lighting with complex texture and non-Lambertian regions and preserve compact and consistent across all views.
Hsi ze = 20.

Fig. 16. Average quantitative evaluation on all 4D LFs of our sparse 4D LF dataset listed in Table II for different 4D LF over-segmentation methods.

in [44] to flexibly select any anchor views (e.g., not only
corner views), but the disparity for only one target view can
be estimated, hence no local or global angular consistency is
considered when applying it for all LF views.

Therefore, the method in [39] is adopted in our experiment
and the improved disparity estimation is used for all methods
for sparse LFs. To ensure accuracy and local consistency in
sparse LFs, instead of estimating the disparity for corner views
and then propagating it to inner views that may include large-
occluded regions, we estimate the disparity maps for every
4 adjacent views (e.g., 2 × 2) with step size equals to 2. This

way, there is no need for propagation using 3D reconstruc-
tion as in [43], and a significant improvement in disparity
estimation accuracy is achieved, as can be seen in Fig. 9.
Consequently, our over-segmentation performance is further
improved in terms of hyperpixel accuracy, compactness, and
cross-view consistency as shown in Fig. 10 and as discussed
in the following section.

In conclusion, inaccurate disparity estimation can affect the
hyperpixels results, as shown in Fig. 11, and the proposed
hyperpixels method is positively affected by using more accu-
rate disparity maps.
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Fig. 17. Example of LF over-segmentation behavior for several methods for regions that do not exist in the central view. As can be seen inside the cyan
square, a portion of the white region in view (9, 9) does not exist in the central view, i.e., view (5, 5). Our proposed method initializes centroids for these
regions in 4D space before clustering. Therefore, hyperpixels remain with regular and similar sizes in all LF views and the accuracy and consistency are
considered during the clustering for those regions.

E. Qualitative and Quantitative Results

In this section, our results are presented and compared to
the benchmark methods for several dense and sparse 4D LF
datasets. All the results in Fig. 10 – Fig. 18 are generated
using estimated disparity maps as explained in Section V-D
and not the GT ones. The GT disparity maps are only used
for computing the quantitative evaluations.

Before comparing our results with the existing methods, it is
worth showing the effect of updating the centroids angular
location during the clustering. In the case of dense LFs, the
disparity range is narrow and in our experiments the disparity
ranges were always less than the Hsi ze. Therefore, almost all
hyperpixels have a 2D slice in all LF views. Consequently, the
over-segmentation performance is not significantly affected by
adjusting the centroids angular locations. However, in the case
of sparse LFs, not all hyperpixels have a slice in all LF views;
hence, the effect of updating the centroids angular location can
be noticed. The importance of updating the centroids angular
location during the clustering is shown in Fig. 12 for sparse
LFs. In Fig. 12, the average performance in terms of accuracy,
compactness and angular consistency is notably improved.

The performance evaluation of our method compared with
other existing methods presented in (Fig. 13 – Fig. 18, where
hyperpixel size is the same as cluster/segment size in other
methods) can be summarized based on each metric as follows:

• Achievable Accuracy (↑)– This metric shows that using
accurate disparity maps can affect the accuracy as seen
in Fig. 10, where GT and different estimated disparity
maps are used during the over-segmentation. As can be
seen in Fig. 13 – Fig. 18, the hyperpixels method achieves
outperforming accuracy by using adaptive 4D clustering
along with hybrid spatio-angular features, for both dense
and sparse LFs. The significance of exploiting disparity
information as a clustering feature becomes apparent in
challenging cases, such as overlapping objects with low
color difference but at different depths. In Fig. 14b and
Fig. 14c, overlapping leaves and the horses’ heads are
examples of this type of challenging regions.

• Boundary Recall (↑)– Our results robustly preserve the
boundaries in dense and sparse LFs even in challenging
regions, such as the horse heads in Fig. 14c, and non-
Lambertian objects, as the glass cup in Fig. 18a. However,

Fig. 18. Qualitative results using our generated sparse 4D LF dataset.
Challenging regions are selected to evaluate the robust balancing between
spatial accuracy, compactness, and cross-view consistency such as transparent
glass, objects and large untextured regions as in the wall. Regardless of the
wide disparity range in this dataset, the proposed hyperpixels are robust and
consistent across views. Hsi ze = 20.

if inaccurate disparity values are estimated, the BR results
can be negatively affected as clearly presented in Fig. 10.

• Under-segmentation Error (↓)– The proposed hyperpix-
els method balances the tradeoff between accuracy, shape
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TABLE III
LABELING–LF ANGULAR CONSISTENCY (LLFAC) FOR DENSE AND SPARSE LIGHT FIELDS (↑)

TABLE IV
AVERAGE CPU TIME FOR VARIOUS CLUSTERING-BASED METHODS OVER SEVERAL LF DATASETS AND SIZES (IN SECONDS FOR ALL LF VIEWS)

regularity (i.e., compactness) and consistency by using
the clustering weights adaptation. Hyperpixels results
generate competitive UE in dense LFs and outperform the
benchmark methods for sparse LFs, as shown in Fig. 13
and Fig. 16. Using accurate disparity maps can reduce UE
as in Fig. 10. While the LFSP and VCLFS methods lead
to lower under-segmentation errors for dense LFs, this is
not necessarily true in terms of accuracy or consistency
metric performance, as in Fig. 13.

• Compactness (↑)– This metric reflects over-segmentation
shape regularity that can be controlled during the cluster-
ing weights adaptation step. In most benchmark methods,
the compactness parameter is either an input set by the
user or is empirically set to a fixed value. However, in this
paper, the clustering weight that affects the compactness
is automatically adapted according to the LF content.
The proposed method achieves competitive CP when
compared to other benchmark methods for dense LFs.
However, due to the new centroids creation in off-central
views, we noticed that the benchmark methods achieve
better CP. In some of the benchmark methods, when a
region lacks a centroid projection, pixels in that region
are grouped to the nearest segment, resulting in larger and
more compact segments in off-central views as in Fig. 17.
This situation increases the average compactness results
and may affect the AA and UE performance. Hyperpixels
compactness can be improved by using accurate disparity
maps as in Fig. 10.

• Consistency metrics: SS (↓), LP (↓), LLFAC (↑)–
LF Over-segmentation consistency is an essential prop-

erty that can drastically affect subsequent editing tasks.
The state-of-the-art methods have different techniques to
ensure consistency, such as enforcing the continuity in
the EPI space or using graph optimization. In this paper,
we exploit per-pixel disparity to effectively project cen-
troids across views and achieve cross-view consistency.
As can be seen in Fig. 13, Fig. 16 and Table III, the
proposed method achieves outperforming results in terms
of SS and LP in dense and sparse LFs. Since there are
no GT maps for the real LFs, angular consistency is not
evaluated numerically. However, Fig. 14 and Fig. 15 show
the angular consistency through the EPIs. Moreover, the
angular consistency can be clearly noticed in the videos
of the supplemental materials. Given the fact that in
SS and LP metrics, the consistency is computed after
warping the views into the central one and discarding
the largely occluded region, we computed the LLFAC to
fairly evaluate the labeling angular consistency for sparse
4D LFs. As seen in Table III and Fig. 16, the proposed
method achieves the best angular consistency for sparse
LFs. Additionally, as in Fig. 10, using better disparity
estimation can improve cross-view consistency due to the
accurate centroids projections.

To sum up, the proposed method achieves a robust bal-
ance between all the metrics for all tested 4D LFs without
using any post-processing step to correct labeling the hyper-
pixels. For sparse LFs, we noticed that the methods that
rely on post-processing optimization, such as the super-
ray and LFSP methods, can generate compact and accurate
over-segmentation for sparse LFs but are not necessarily
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consistent across views. Moreover, a significant reduction is
noticed in the VCLFS method performance when sparse LFs
are used. Since the VCLFS method relies on the EPI structure
and cannot adequately handle the irregular EPI structure in
sparse LFs.

Finally, existing limitations in this proposed method,
in some 4D LFs where the disparity is not accurately estimated
(e.g., in real world 4D LF scenes and when non-Lambertian
objects exist), inconsistent or inaccurate hyperpixels may be
generated. As an example, Fig. 11 shows a failure case in a
part of the metallic object that has inaccurate disparity values.
To avoid that, using better disparity maps can significantly
improve the final results. Finally, the current implementation
is not optimized since this was out of this paper scope.
Nevertheless, the average CPU time required by each method
to over-segment 4D LFs using several LF datasets is shown
in Table IV.

VI. CONCLUSION

In this paper, the concept of hyperpixel for 4D LFs is ini-
tially defined. After that, a 4D LF over-segmentation method
based on 4D K -means clustering is proposed to be used for
sparse and dense 4D LFs. Moreover, our proposed method
initializes the centroids in an occlusion-aware manner and uses
an adaptive weighted 4D K -means clustering based on hybrid
features.

The proposed hyperpixels method can be used as a
pre-processing step for sparse and dense LF processing and
editing, such as semantic segmentation and saliency detec-
tion. Quantitative and qualitative results show outperforming
over-segmentation performance for dense and sparse 4D LFs.

In the future, we will further investigate how to exploit
the non-linearities in the EPI space for sparse LFs and non-
Lambertian objects, to enforce hyperpixel consistency across
views. Additionally, we will consider further extending our
method to generate hyperpixels for 5D LF videos.
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