Please use this identifier to cite or link to this item: http://hdl.handle.net/10071/26903
Full metadata record
DC FieldValueLanguage
dc.contributor.authorAntunes, N.-
dc.contributor.authorPereira, J.-
dc.contributor.authorRosa, J.-
dc.contributor.authorFerreira, J.-
dc.date.accessioned2022-12-29T15:19:45Z-
dc.date.available2022-12-29T15:19:45Z-
dc.date.issued2022-
dc.identifier.citationAntunes, N., Pereira, J., Rosa, J., & Ferreira, J. (2022). Grid-based vessel deviation from route identification with unsupervised learning. Applied Sciences, 12(21): 11112. http://dx.doi.org/10.3390/app122111112-
dc.identifier.issn2076-3417-
dc.identifier.urihttp://hdl.handle.net/10071/26903-
dc.description.abstractThe application of anomaly-monitoring and surveillance systems is crucial for improving maritime situational awareness. These systems must work on the fly in order to provide the operator with information on potentially dangerous or illegal situations as they are occurring. We present a system for identifying vessels deviating from their normal course of travel, from unlabelled AIS data. Our approach attempts to solve problems with scalability and on-line learning of other grid-based systems available in the literature, by applying a dynamic grid size, adjustable per vessel characteristics, combined with a binary-search tree method for data discretization and vessel grid search. The results of this study have been validated during the Portuguese Maritime Trial in April 2022, conducted by the Portuguese navy along the southern coast of Portugal.eng
dc.language.isoeng-
dc.publisherMDPI-
dc.relationinfo:eu-repo/grantAgreement/EC/H2020/883374/EU-
dc.rightsopenAccess-
dc.subjectVessel trajectorieseng
dc.subjectAnomaly detectioneng
dc.subjectMaritime securityeng
dc.titleGrid-based vessel deviation from route identification with unsupervised learningeng
dc.typearticle-
dc.peerreviewedyes-
dc.volume12-
dc.number21-
dc.date.updated2022-12-29T15:18:53Z-
dc.description.versioninfo:eu-repo/semantics/publishedVersion-
dc.identifier.doi10.3390/app122111112-
dc.subject.fosDomínio/Área Científica::Ciências Naturais::Ciências da Computação e da Informaçãopor
iscte.subject.odsIndústria, inovação e infraestruturaspor
iscte.subject.odsProteger a vida marinhapor
iscte.identifier.cienciahttps://ciencia.iscte-iul.pt/id/ci-pub-91389-
iscte.alternateIdentifiers.wosWOS:000883431700001-
iscte.alternateIdentifiers.scopus2-s2.0-85141872015-
iscte.journalApplied Sciences-
Appears in Collections:ISTAR-RI - Artigos em revistas científicas internacionais com arbitragem científica

Files in This Item:
File SizeFormat 
article_91389.pdf2,29 MBAdobe PDFView/Open


FacebookTwitterDeliciousLinkedInDiggGoogle BookmarksMySpaceOrkut
Formato BibTex mendeley Endnote Logotipo do DeGóis Logotipo do Orcid 

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.