Please use this identifier to cite or link to this item: http://hdl.handle.net/10071/24628
Full metadata record
DC FieldValueLanguage
dc.contributor.authorMariano, P.-
dc.contributor.authorAlmeida, S. M.-
dc.contributor.authorSantana, P.-
dc.contributor.editorSolic, P., Nizetic, S., Rodrigues, J. J. P. C., Lopez-de-Ipina Gonzalez-de-Artaza, D., Perkovic, T., Catarinucci, L., and Patrono, L.-
dc.date.accessioned2022-02-28T15:21:36Z-
dc.date.available2022-02-28T15:21:36Z-
dc.date.issued2020-
dc.identifier.isbn978-953-290-105-4-
dc.identifier.urihttp://hdl.handle.net/10071/24628-
dc.description.abstractIn this paper we investigate how to build a model to predict pollution levels using geographical information. By focusing on this kind of attributes we hope to contribute to an effective city management as we will find the urban configurations that conduct to the lowest pollution levels. We used decision trees to build a regression model. We performed a parameter grid search using cross validation. Ablation analysis where some attributes were removed from training showed that geographical based attributes impact the prediction error of decision trees.eng
dc.language.isoeng-
dc.publisherIEEE-
dc.relationLISBOA-01-0145-FEDER-032088-
dc.rightsopenAccess-
dc.subjectMachine learningeng
dc.subjectAir pollutioneng
dc.subjectGeographic information systemeng
dc.titlePollution prediction model using data collected by a mobile sensor networkeng
dc.typeconferenceObject-
dc.event.title5th International Conference on Smart and Sustainable Technologies, SpliTech 2020-
dc.event.typeConferênciapt
dc.event.locationSpliteng
dc.event.date2020-
dc.peerreviewedyes-
dc.journal2020 5th International Conference on Smart and Sustainable Technologies (SpliTech)-
degois.publication.locationSpliteng
degois.publication.titlePollution prediction model using data collected by a mobile sensor networkeng
dc.date.updated2022-02-28T15:19:03Z-
dc.description.versioninfo:eu-repo/semantics/acceptedVersion-
dc.identifier.doi10.23919/SpliTech49282.2020.9243844-
iscte.identifier.cienciahttps://ciencia.iscte-iul.pt/id/ci-pub-77515-
iscte.alternateIdentifiers.scopus2-s2.0-85096714136-
Appears in Collections:ISTAR-CRI - Comunicações a conferências internacionais

Files in This Item:
File Description SizeFormat 
conferenceobject_77515.pdfVersão Aceite516,24 kBAdobe PDFView/Open


FacebookTwitterDeliciousLinkedInDiggGoogle BookmarksMySpaceOrkut
Formato BibTex mendeley Endnote Logotipo do DeGóis Logotipo do Orcid 

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.