Please use this identifier to cite or link to this item:
http://hdl.handle.net/10071/24628Full metadata record
| DC Field | Value | Language |
|---|---|---|
| dc.contributor.author | Mariano, P. | - |
| dc.contributor.author | Almeida, S. M. | - |
| dc.contributor.author | Santana, P. | - |
| dc.contributor.editor | Solic, P., Nizetic, S., Rodrigues, J. J. P. C., Lopez-de-Ipina Gonzalez-de-Artaza, D., Perkovic, T., Catarinucci, L., and Patrono, L. | - |
| dc.date.accessioned | 2022-02-28T15:21:36Z | - |
| dc.date.available | 2022-02-28T15:21:36Z | - |
| dc.date.issued | 2020 | - |
| dc.identifier.isbn | 978-953-290-105-4 | - |
| dc.identifier.uri | http://hdl.handle.net/10071/24628 | - |
| dc.description.abstract | In this paper we investigate how to build a model to predict pollution levels using geographical information. By focusing on this kind of attributes we hope to contribute to an effective city management as we will find the urban configurations that conduct to the lowest pollution levels. We used decision trees to build a regression model. We performed a parameter grid search using cross validation. Ablation analysis where some attributes were removed from training showed that geographical based attributes impact the prediction error of decision trees. | eng |
| dc.language.iso | eng | - |
| dc.publisher | IEEE | - |
| dc.relation | LISBOA-01-0145-FEDER-032088 | - |
| dc.rights | openAccess | - |
| dc.subject | Machine learning | eng |
| dc.subject | Air pollution | eng |
| dc.subject | Geographic information system | eng |
| dc.title | Pollution prediction model using data collected by a mobile sensor network | eng |
| dc.type | conferenceObject | - |
| dc.event.title | 5th International Conference on Smart and Sustainable Technologies, SpliTech 2020 | - |
| dc.event.type | Conferência | pt |
| dc.event.location | Split | eng |
| dc.event.date | 2020 | - |
| dc.peerreviewed | yes | - |
| dc.journal | 2020 5th International Conference on Smart and Sustainable Technologies (SpliTech) | - |
| degois.publication.location | Split | eng |
| degois.publication.title | Pollution prediction model using data collected by a mobile sensor network | eng |
| dc.date.updated | 2022-02-28T15:19:03Z | - |
| dc.description.version | info:eu-repo/semantics/acceptedVersion | - |
| dc.identifier.doi | 10.23919/SpliTech49282.2020.9243844 | - |
| iscte.identifier.ciencia | https://ciencia.iscte-iul.pt/id/ci-pub-77515 | - |
| iscte.alternateIdentifiers.scopus | 2-s2.0-85096714136 | - |
| Appears in Collections: | ISTAR-CRI - Comunicações a conferências internacionais | |
Files in This Item:
| File | Description | Size | Format | |
|---|---|---|---|---|
| conferenceobject_77515.pdf | Versão Aceite | 516,24 kB | Adobe PDF | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.












