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Abstract—In this paper we investigate how to build a model
to predict pollution levels using geographical information. By
focusing on this kind of attributes we hope to contribute to an
effective city management as we will find the urban configurations
that conduct to the lowest pollution levels. We used decision
trees to build a regression model. We performed a parameter
grid search using cross validation. Ablation analysis where some
attributes were removed from training showed that geographical
based attributes impact the prediction error of decision trees.

Index Terms—machine learning, air pollution, geographic
information system

I. INTRODUCTION

Over the last decades, exposure to airborne particulate
matter (PM) has been identified as an important risk factor
for human mortality, and negative health outcomes have been
observed at concentrations usually experienced in cities. Even
though the air quality in Europe has been improving due
to emission control strategies, PM concentrations are still
exceeding the EU limit values and the WHO air quality
guidelines in many cities, conducting to more than 400000
premature deaths annually [1]. Consequently, prompt action
through efficient air quality management is required, not only
to ensure that the legal limits are not exceeded, but also
to guarantee that the consequences of poor air quality are
controlled and minimized.

The levels of PM in the cities depend on a combination
of factors, such as emissions, meteorology and dispersion
conditions, which are affected by the topography, green in-
frastructures and geometry of the streets and buildings. The
management of air quality requires quantitative estimates
about the impact of these factors in the air quality.

In this paper we investigate how we can build a regression
model for air pollution using only geographical information
and data from a mobile sensor network. We focus on machine
learning methods such as decision tree (DT) in contrast to
other approaches on pollution modeling. We analyse which
attributes are more relevant to give a correct prediction. This
work is part of the ExpoLIS project, which aims at deploying
a sensor network on buses.

Since the hardware from ExpoLIS is still under devel-
opment [2] we use the dataset collected by the OpenSense

This work has been funded by FCT - Foundation for Science and Technol-
ogy, I.P., within the framework of the project ExpoLIS (LISBOA-01-0145-
FEDER-032088).

project [3], which also used a mobile sensor network. This
dataset has 2.5 years of measurements of number of particles,
particle diameter, and lung deposited surface area (LDSA).
This data has been used to construct air pollution maps [4].

There are different approaches on pollution prediction and
modeling: Gaussian plume models, computational fluid dy-
namics [5], Krigging [6], land use regression [7], and neural
networks [8]. For a review on particle dispersion see [9].
Within these approaches, different variables are used as pa-
rameters to tune the models. In [7] the authors use distance to
roads, in [5] they focus on urban canyons formed by buildings
along side a road geometry. Another attribute that affects
pollution is topography [8]. Time (week day and month) also
affects pollution levels as it was one of the most effective
attribute to predict air pollution [8].

Meteorological conditions such as wind speed and direction
are known to also affect air pollution [10]. Nevertheless,
we are interested in investigating the accuracy of a pol-
lution regression model that does not rely on wind speed
and direction but focuses in urban geographical information.
By focusing on this type of information, we hope to find
the best urban configuration (building geometry, presence of
vegetation, number of roads) with lowest pollution levels.

II. METHODS

A. Dataset Preparation

The dataset collected by the OpenSense project [3] was
used. The data was gathered during the period April 2012 to
December 2014 by a mobile sensor network. The measuring
hardware was mounted on the top of 10 streetcars that operated
in the city of Zurich, Switzerland. The dataset contains time
of day, geographical location, number of particles, average
particle diameter, and LDSA. The sensor data was stored in a
PostgreSQL database with PostGIS extension.

The computation of geographical information was based
on data provided by Open Street Map, in particular a user
defined rectangle bounded by coordinates (47°17′N, 8°26′E)
and (47°30′N, 8°39′E) was used.1 This information was stored
in a database using the tool osm2pgsql.2 This is also a
PostgreSQL/PostGIS database.

1The data provider at https://overpass-api.de was used.
2https://github.com/openstreetmap/osm2pgsql



CREATE FUNCTION attribute_area_greenery_in_a_circle (
IN position GEOGRAPHY,
IN radius INTEGER

)
RETURNS FLOAT
LANGUAGE SQL
AS
$$

SELECT
SUM (

ST_Area (
ST_Intersection (

ST_Buffer (
position,
radius,
’’

),
way

)::geography
)

)
FROM __table_polygon__
WHERE

ST_DWithin (
way,
position,
radius,
TRUE

)
AND (

landuse = ’forest’ OR
landuse = ’garden’ OR
landuse = ’grass’ OR
landuse = ’plant_nursery’ OR
leisure = ’garden’ OR
leisure = ’park’ OR
"natural" = ’grass’ OR
"natural" = ’grassland’

)
$$
;

Fig. 1. SQL function used to compute vegetation area attribute.

The attributes used in the learning task were stored in a third
database. These are divided in date/time and geographical.
Date/time attributes are minute of day {0, 1, . . . , 60 · 24− 1},
day of week {0, 1, . . . , 6}, and week of year {0, 1, . . . , 52}.
Geographical attributes are road and vegetation area, all within
a circle with radius r. All circles are centred in a grid cell
centre. Each entry in this database corresponds to a sensor
reading in the first database.

Computation of the geographical attributes was done in SQL
using the API of PostGIS. Figure 1 shows an example of
the function to compute the attribute vegetation area within
a circle with radius r. It takes as parameters the geographical
coordinates of a given location and r. For efficiency, the
geographical objects within r units of the position are filtered
(first condition in the WHERE clause). Each Open Street Map
has a set of tags that describe the objects, which are used in
the second part of the WHERE clause to select the objects that
are characterised as vegetation.

The time complexity of the functions that compute the
geographical attributes increases linearly with the number of
Open Street Map objects that are imported in the database.

TABLE I
NUMBER OF GRID CELLS AND GAIN FOR DIFFERENT GRID CELL LENGTHS.

grid cell length (m) number of grid cells gain (%)

1 1 225 260 84.92
2 489 478 93.98
5 139 263 98.29

10 52 671 99.35
20 19 684 99.76

The smallest rectangle that contains all the sensor readings
locations could be used, but Open Street Map data providers
leave out objects that are not entirely contained in a rectangle.
This would affect the result of the computation of geographical
attributes, that is, the resulting value would be underestimated.
We could use regional or city maps that are provided by a
couple of Open Street Map data providers, but in the case of
Zurich it contains too much objects. As a compromise, the
rectangle mentioned above was chosen.

The database has around 36 · 106 sensor readings that
correspond to 21 019 480 unique geographical locations. If the
computation of a geographical attribute for a single location
takes 1 second, then computing the geographical attributes
for all unique locations would take 243 days. In order to
reduce the time needed to compute all geographical attributes,
a rectangular grid was considered. Table I shows how many
grid cells with sensor readings there are for different grid cell
lengths. Column gain shows the expression 1 − ci/u, where
u is the number of unique geographical locations and ci is
the number of grid cells (with sensor readings) when using a
grid cell length of i. This column is thus the speed up gain in
computing a geographical attribute.

A grid cell of 2m was chosen as it was a good compromise
between number of grid cells and time to compute geograph-
ical attributes. These cells span a latitude of 0°0′0.0972′′ and
a longitude of 0°0′0.0648′′. Figure 2 shows the locations and
number of sensor readings that were used.

Figure 3 shows the histograms of collected sensor data:
number of particles, diameter of particle and LDSA. Ex-
amining these histograms and comparing with the error of
the regression model, we can measure how good was the
prediction.

B. Model Parameters

We have used the scikit-learn python package [11] to
perform parameter exploration, model learning and sensitivity.
This package provides different methods (DTs, neural net-
works (NNs), Gaussian processes (GPs), k-nearest neighbours
(KNN)) to build a regression model. DTs were selected due
to their fast training speeds.

The scikit-learn package allows to perform parameter ex-
ploration. In a DT we have explored: the maximum depth of
the tree (higher values produce a DT that is specialised in the
training set), called max depth henceforth; and the threshold
used in expanding a tree node that depends on the number of



Fig. 2. Location and number of sensor readings.

samples, called min samples henceforth. For other parameters
we refer the reader to the scikit-learn documentation.3

Parameter exploration was done using grid search with cross
validation. Afterwards, the best parameters were tested in a
validating dataset (not used during cross validation).

To assess if an attribute is relevant to the prediction tasks, we
have performed an ablation analysis. This analysis is usually
done with NN and consists in removing input neurons. The
new network is feed the test data set and the results are
compared with the unmodified network. In the case of DTs we
opted to train a new DT but using fewer attributes: road and
vegetation, only roads, only vegetation, without minute of day,
or day of week, or week of year. For the best DT parameters
found and attribute set, we performed 10-fold cross validation.

III. RESULTS

Table II shows the result of the DT parameter grid search
using cross validation. The prediction error shown in each
entry of the table is the absolute difference between the
predicted and true pollution levels:

1

n

∑
i

|fi(xi)− yi(xi)|, (1)

where xi is the ith data sample, yi(xi) is the pollution ground-
truth (either number of particles, particle diameter, or LDSA)
of data sample xi, fi(xi) is the predicted pollution, and n is
the number of data samples. Rows NL mean that no limit
was imposed on the maximum depth of the learned DT.
Columns 0.1% and 0.05% mean that if the fraction of samples

3https://scikit-learn.org/stable/modules/generated/
sklearn.tree.DecisionTreeRegressor.html

Fig. 3. Histograms of collected sensor data.

(compared to the dataset size) in a tree node had at least the
previous percentage, then it was expanded. Rightmost column
1s means that if the number of samples in a tree node was
higher than one, then it was expanded. As the depth of a DT
gets higher, the prediction error gets lower (towards zero).
Bigger DTs can lead to over-fitting and poorer generalisation
capabilities. However, even if we allow a DT to grow as large
as possible (NL rows) or tree nodes are introduced when the
number of samples is higher than one, the error does not reach
zero. This is due to imprecision in the sensors.

Table III shows the prediction error on the validating set
using the DT parameters that had the best result during grid
search. As can be seen, the error is similar to the prediction
error obtained during grid search. Moreover, if we compare
with the range of sensor values shown on the histograms
in Figure 3, the error is small compared to the range of
values: 0.5%, 1.3% and 0.4% for number of particles, particle
diameter and LDSA, respectively. Notice that this percentage
is computed against the range of measured sensor values (the



TABLE II
RESULTS OF DECISION TREE PARAMETERS GRID SEARCH. PREDICTION

ERROR OF REGRESSION MODEL.

number of particles

min samples
0.1% 0.05% 1s

m
ax

de
pt

h 10 7371.915 7281.015 7139.713
12 7219.262 7074.611 6776.82
14 7123.724 6933.215 6429.622
16 7075.938 6847.629 6093.787
NL 7041.493 6774.615 4946.988

particle diameter

min samples
0.1% 0.05% 1s

m
ax

de
pt

h 10 8.465 8.296 8.078
12 7.99 7.672 7.172
14 7.759 7.353 6.469
16 7.619 7.146 5.868
NL 7.561 7.007 4.662

LDSA

min samples
0.1% 0.05% 1s

m
ax

de
pt

h 10 13.801 13.5 13.132
12 13.386 12.9 11.991
14 13.134 12.488 10.873
16 13.035 12.289 9.933
NL 12.993 12.163 7.787

horizontal axis in Figure 3, and the fifth column in Table III). It
is not the range of values that the sensor electronics is capable
of measuring.

As the DT unlimited max depth parameter and min samples
equal to one where the ones that showed the lowest prediction
error, they were used in the ablation experiment. Figure 4
shows the prediction error for all combinations of removed
attributes for all collected sensor data. The effect of using only
the vegetation geographical attribute improved the prediction
error of DT in respect to number of particles. Regarding the
other sensor data (particle diameter and LDSA), only when we
removed one of the time attributes we observed an increase in
prediction error.

IV. DISCUSSION

Examining the prediction error shown in Figure 4, if we
compare the effect of only dropping a time attribute (left
column in the figure), the prediction error increases signifi-
cantly (p-value with significance level at 95%) in all cases.
If in addition only roads are used (middle column), again the
prediction error increases. If only vegetation is used and a time
attribute is dropped, then the prediction error increases in all
cases except: day of week for number of particles, and minute
of day for particle diameter.

Regarding the geographical attribute, if we compare the
effect of only using one of them, then the prediction error
decreases if only vegetation is used. If in addition a time
attribute is also dropped, then again only when vegetation is
used, the prediction error is statistically different. This means

that vegetation is more important to obtain a reliable regression
model.

The models obtained with DT can be interpreted but there
are known limitations in the models that can be built. The
learning algorithm also performs poorly when the dataset is
unbalanced regarding the number of classes or in our case the
distribution of the target function. As such it is interesting to
consider other types of models.

NN can approximate any function. However, in this work,
the time complexity of backpropagation is a problem. If there
are n data samples, m attributes, k hidden layers each con-
taining h neurons, and o output neurons, then backpropagation
has a time complexity of O(n · m · hk · o · i), where i
is the number of iterations until convergence. In this work,
the time complexity expression is dominated by the number
of data samples (as has been said the number of sensor
readings is around 36 · 106). Preliminary tests using NN
did not produced regression models with better prediction
errors. Doing parameter exploration grid search on the learning
parameters of NN is very time consuming.

GPs can provide interpretable models but suffer from cubic
time and quadratic space complexities on the number of
training samples. In our case this would require storing a data
structure with (36 · 106)2 = 1156 000 000 000 000 ≈ 1015 =
1 Peta. There is ongoing research to tackle large datasets [12].

KNN is a parameter less method that has a wide success
in prediction and regression [13]. The models that are built
use the data that is more similar to the target pollution
level. In this work, time complexity is also an issue as it is
necessary to find for every data sample the nearest one. A
naive implementation of KNN can take quadratic time on the
number of training samples, but with appropriate data structure
this can be reduced to O(n log n).

V. CONCLUSIONS

We have presented preliminary results of building a pol-
lution prediction model based on data collected by a mobile
sensor network using as attributes geographical information.
Although there is time lag between sensor collection and the
computation of geographical attributes, the prediction error of
the model was around 1% of the range of measured sensor
values.

Regarding the usage of geographical information to predict
pollution data, we observed that the presence of attribute veg-
etation reduced prediction error only with number of particles
pollution data. For the other two data, the attributes that depend
on time are more important to reduce prediction error.

As future work we plan to investigate how to reduce data
size in order to use other regression models. Decision trees
have known limitations on the models that can be obtained.
Preliminary experiments with NN, GP and KNN failed either
because of the time needed to build a model or due to memory
restrictions. One candidate avenue is to reduce considerably
the size of the training dataset.



TABLE III
PREDICTION ERROR ON VALIDATING SET.

sensor data max depth min samples prediction error value range fraction

number of particles NL 1s 4704.374 1 000 000 0.5%
particle diameter NL 1s 4.446 350 1.3%

LDSA NL 1s 7.421 2000 0.4%

Fig. 4. Prediction error of ablation test.
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