Utilize este identificador para referenciar este registo: http://hdl.handle.net/10071/23620
Registo completo
Campo DCValorIdioma
dc.contributor.authorTavares, V.-
dc.contributor.authorMonteiro, J.-
dc.contributor.authorVassos, E.-
dc.contributor.authorColeman, J.-
dc.contributor.authorPrata, D.-
dc.date.accessioned2021-12-02T15:17:27Z-
dc.date.available2021-12-02T15:17:27Z-
dc.date.issued2021-
dc.identifier.issn2073-4425-
dc.identifier.urihttp://hdl.handle.net/10071/23620-
dc.description.abstractPredicting gene expression from genotyped data is valuable for studying inaccessible tissues such as the brain. Herein we present eGenScore, a polygenic/poly-variation method, and compare it with PrediXcan, a method based on regularized linear regression using elastic nets. While both methods have the same purpose of predicting gene expression based on genotype, they carry important methodological differences. We compared the performance of expression quantitative trait loci (eQTL) models to predict gene expression in the frontal cortex, comparing across these frameworks (eGenScore vs. PrediXcan) and training datasets (BrainEAC, which is brain-specific, vs. GTEx, which has data across multiple tissues). In addition to internal five-fold cross-validation, we externally validated the gene expression models using the CommonMind Consortium database. Our results showed that (1) PrediXcan outperforms eGenScore regardless of the training database used; and (2) when using PrediXcan, the performance of the eQTL models in frontal cortex is higher when trained with GTEx than with BrainEAC.eng
dc.language.isoeng-
dc.publisherMDPI-
dc.relation292/16-
dc.relationDSAIPA/DS/0065/2018-
dc.relation0145-FEDER-030907-
dc.relationPD/BD/114460/2016-
dc.relationFP7-PEOPLE-2013-CIG 631952-
dc.relationLISBOA-01–0145-FEDER-030907-
dc.relationG0901254-
dc.relationIF/00787/2014-
dc.relationG0802462-
dc.rightsopenAccess-
dc.subjectExpression quantitative trait locieng
dc.subjectGene expressioneng
dc.subjectGenome wide association studyeng
dc.subjectPolygenic scoreeng
dc.subjectTranscriptomeeng
dc.titleEvaluation of Genotype-Based Gene Expression Model Performance: A cross-framework and cross-dataset studyeng
dc.typearticle-
dc.peerreviewedyes-
dc.journalGenes-
dc.volume12-
dc.number10-
degois.publication.issue10-
degois.publication.titleEvaluation of Genotype-Based Gene Expression Model Performance: A cross-framework and cross-dataset studyeng
dc.date.updated2021-12-02T15:16:52Z-
dc.description.versioninfo:eu-repo/semantics/publishedVersion-
dc.identifier.doi10.3390/genes12101531-
dc.subject.fosDomínio/Área Científica::Ciências Naturais::Ciências Biológicaspor
dc.subject.fosDomínio/Área Científica::Ciências Médicas::Medicina Clínicapor
dc.subject.fosDomínio/Área Científica::Ciências Médicas::Biotecnologia Médicapor
iscte.subject.odsSaúde de qualidadepor
iscte.identifier.cienciahttps://ciencia.iscte-iul.pt/id/ci-pub-83729-
iscte.alternateIdentifiers.wosWOS:000717105000001-
iscte.alternateIdentifiers.scopus2-s2.0-85116105079-
Aparece nas coleções:CIS-RI - Artigos em revistas científicas internacionais com arbitragem científica

Ficheiros deste registo:
Ficheiro Descrição TamanhoFormato 
article_83729.pdfVersão Editora2,04 MBAdobe PDFVer/Abrir


FacebookTwitterDeliciousLinkedInDiggGoogle BookmarksMySpaceOrkut
Formato BibTex mendeley Endnote Logotipo do DeGóis Logotipo do Orcid 

Todos os registos no repositório estão protegidos por leis de copyright, com todos os direitos reservados.