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Abstract: Predicting gene expression from genotyped data is valuable for studying inaccessible
tissues such as the brain. Herein we present eGenScore, a polygenic/poly-variation method, and
compare it with PrediXcan, a method based on regularized linear regression using elastic nets. While
both methods have the same purpose of predicting gene expression based on genotype, they carry
important methodological differences. We compared the performance of expression quantitative
trait loci (eQTL) models to predict gene expression in the frontal cortex, comparing across these
frameworks (eGenScore vs. PrediXcan) and training datasets (BrainEAC, which is brain-specific, vs.
GTEx, which has data across multiple tissues). In addition to internal five-fold cross-validation, we
externally validated the gene expression models using the CommonMind Consortium database. Our
results showed that (1) PrediXcan outperforms eGenScore regardless of the training database used;
and (2) when using PrediXcan, the performance of the eQTL models in frontal cortex is higher when
trained with GTEx than with BrainEAC.

Keywords: expression quantitative trait loci; transcriptome; gene expression; genome wide
association study; polygenic score

1. Introduction

The emergence of genome-wide association studies (GWAS) has allowed the identifi-
cation of associations between thousands of variants (mainly single nucleotide polymor-
phisms (SNP)) and susceptibility to complex diseases, such as schizophrenia [1]. However,
there is still a gap between the variants and their functional role in the diseases’ etiologies,
in particular in regards to SNPs [2]. Indeed, nearly 90% of these genetic variations occur
in non-coding deoxyribonucleic acid (DNA) sequences, and only about 4–5% of plausibly
causal variants in GWAS-associated regions are coding variants, which suggests that the
main mechanism by which variation in these regions acts is not by altering protein struc-
ture. In comparison, about 50% of plausibly causal variants are expression quantitative
trait loci (eQTL), suggesting moderation of gene expression is an important mechanism of
action [3,4]. As such, it is crucial to consider and efficiently utilize variants correlated with
gene expression, i.e., eQTL, to better understand the mechanisms behind the role of specific
genes (especially if implicated by the hypothesis-free GWA approach) in intermediate or
complex phenotypes [5].

The degree of expression of genes is typically inferred from the transcriptome, i.e.,
the messenger ribonucleic acid (mRNA) levels of the genes. One of the reasons for the
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delayed translation of transcriptome-wide association studies (TWAS) into clinical practice
is that a gene expression profile is tissue-specific [6]. This is a crucial factor for a correct
clinical interpretation of the eQTLs identified in the TWAS. However, in clinical practice,
sampling invasiveness is the most important determinant for decision making regarding
tissue sampling [7]. Indeed, measuring the expression of a given gene is invasive for many
tissues, including the human brain, requiring postmortem sampling. Therefore, there is
an urgent need for accurate statistical methods for the non-invasive estimation of gene
expression in tissues where sampling presents more risks than the expected clinical benefit.
Recently, efforts have been put forward to compile large-scale concomitant transcriptomic
and genomic datasets, i.e., eQTL datasets, such as the Genotype-Tissue Expression (GTEx)
project [8] across tissues, and the brain-specific Brain eQTL Almanac (BrainEAC) [9]
and CommonMind Consortium (CMC) [10]. Using these emerging eQTL datasets, gene
expression can be used as an intermediate molecular phenotype to potentially address the
functional gap in GWAS findings and take a much needed step closer to understanding the
underlying mechanisms and molecular pathways of complex disorders.

Recently, a gene-based method, PrediXcan, was developed and has been widely used
to predict gene expression levels from SNPs [11–14]. In particular, using eQTL data and
effect sizes determined through comprehensive eQTL analyses on reference transcriptome
datasets, PrediXcan can predict expression levels for the whole transcriptome in multiple
tissues [12]. Gamazon and colleagues [12] compared two methods for eQTL-based gene
expression prediction: one based on traditional polygenic scoring [15] with one based
on a regularized regression analysis using elastic net [16]; they showed that the latter
yielded higher correlation between the observed and predicted gene expressions. However,
the comparison was potentially biased, since (1) linkage disequilibrium (LD) between
variations was not accounted for in the polygenic approach used; and (2) PrediXcan models
do not account for individual missing genotypes; i.e., these are simply replaced by zero,
thus assuming that that particular SNP makes the same contribution to the predicted gene
expression level as a common homozygous genotype. The elastic net method consisted
of (1) variable selection (i.e., selecting only SNPs that influence gene expression); and
(2) handling highly correlated SNPs (i.e., those in high LD) by balancing their contribution
to the variance in gene expression [12]. The polygenic method used consisted of (1) the
selection of SNPs influencing gene expression by individually testing the association of each
allele with gene expression through a linear regression; and (2) predicting gene expression
as a weighted sum (taken from the individual linear regression analysis) of the SNP’s alleles
showing an association with the observed gene expression below a significance threshold
(i.e., p < single top SNP, 1 × 10−4, 0.001, 0.01, 0.05, 0.5 or 1).

We herein tackled the two above-described limitations, i.e., the inaccurate polygenic
method to which PrediXcan was originally compared and the passive incorporation of
missing genotypes into the gene expression prediction. We did this by using an improved
polygenic method to predict gene expression levels based on genome-wide genotypes, the
eGenScore. In particular, we addressed the LD between gene expression-associated SNPs
by filtering them out and the missing genotype issue by incorporating an adjustment factor
to the weighted sum of SNP alleles based on the expected proportion of those alleles in a
standardized population. After addressing the two issues above, we then aimed to compare
our improved polygenic method with the PrediXcan elastic net method. Our second aim
was to assess how training these tools with the most recent versions of each of the two
main transcriptomic and genomic databases available, BrainEAC and GTEx, would affect
their performance. To achieve both purposes, we trained eQTL models (which yield eQTL
scores as a proxy of gene expression) with both frameworks, eGenScore and PrediXcan,
and with each of the two databases, BrainEAC and GTEx, using transcriptomic data
(i.e., gene expression levels) from the frontal cortex. We then compared the performance of
the eQTL models across different frameworks (i.e., eGenScore vs. PrediXcan) and across
databases (i.e., BrainEAC vs. GTEx), using an internal cross-validation approach and an
external validation approach by applying the eQTL model to a third database from the
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CMC. Although the eGenScore method could theoretically be applied to any tissue type,
herein we focused on the frontal cortex, as this tissue is the only one common to the three
databases used in this study, i.e., BrainEAC, GTEx, and CMC.

2. Materials and Methods

An overview of the datasets and methods used in this study is represented in Figure 1.
All quality control procedures, described below, were performed by the database providers.
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2.1. Genomic and Transcriptomic Datasets

BrainEAC. The BrainEAC dataset was used to train and internally validate eQTL
models using eGenScore or PrediXcan. The dataset belongs to the UK Brain Expression
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Consortium (UKBEC) [9], was downloaded from the first version of the BrainEAC website
(http://www.braineac.org/ (accessed on 19 May 2020)), and is composed of genome-
wide genotypes and gene expression levels in the frontal cortex of 127 individuals. All
samples and 5,712,227 SNPs have passed quality control (exclusion of individuals with non-
European ancestry; samples with call rate < 95%; p-value for deviation from HWE < 10−4;
genotyping call rate < 95%; poor post-imputation quality (R2 < 0.50); and minor allele
frequency (MAF) < 5%). From these 127 individuals, gene expression levels for 25,501 genes
(normalized using robust multi-array average, log2 transformed, and corrected for batch
effects, sex, and brain bank) were provided by the BrainEAC dataset. Furthermore, the
genomic data were mapped onto the human genome assembly GRCh37/hg19, the tran-
scriptomic data were annotated according to NCBI Reference Sequence build 36, and, as for
the databases GTEx and CMC and the 1000 Genomes data described below, only SNPs and
exon-specific transcripts from chromosomes 1 to 22 were included in this study (i.e., sex
chromosomes were excluded).

GTEx. The GTEx dataset (accessed from the GTEx Portal and dbGaP accession number
phs000424.v8.p2, on 1 September 2020) was used to train and internally validate eQTL
models using eGenScore or PrediXcan. The dataset is part of the Genotype Tissue Ex-
pression (GTEx) project conducted by the GTEx Consortium [17], and comprises whole
genome sequencing and gene expression levels in the frontal cortex (Broadman area 9)
of 158 individuals. All samples and 8,113,423 SNPs have passed quality control (exclu-
sion of individuals with non-European ancestry; samples with call rate < 85%; p-value
for deviation from HWE < 10−8; genotyping call rate < 85%; and minor allele frequency
(MAF) < 1%). From these 158 individuals, gene expression levels for 17,354 genes in tran-
scripts per million were provided by the GTEx dataset. Furthermore, the genomic data
were mapped onto the human genome assembly GRCh38/hg38, and the transcriptomic
data were mapped to GENCODE 26.

CMC. The CMC dataset (Release 1) was used to externally validate the eQTL models
trained with eGenScore or PrediXcan using BrainEAC or GTEx. The dataset belongs to
the CommonMind Consortium [10] and comprises genome-wide genotypes and gene
expression levels in the frontal cortex (dorsolateral prefrontal cortex) of 214 individuals. All
samples and 39,107,633 SNPs have passed quality control (exclusion of individuals with
neuropsychiatric diseases—bipolar disorder, schizophrenia, or affective disorder—and
with non-European ancestry; samples with call rate < 90%; p-value for deviation from
HWE < 5 × 10−5; genotyping call rate < 98%). From these 214 individuals, gene expres-
sion levels for 15,478 genes in counts per million (normalized by scaling each sample’s
read count to the total counts by gene, log2 transformed, and corrected for covariates
using surrogate variables analysis) were provided by the CMC dataset. Furthermore, the
genomic data were mapped onto the human genome assembly GRCh37/hg19, and the
transcriptomic data were annotated to GENCODE 26.

1000 Genomes. The 1000 Genomes datasets (phase 3, October 2015, EUR panel) were
used to compute LD and to adjust the weight of each SNP in the eQTL models trained
with eGenScore using the BrainEAC dataset (1000 Genomes dataset 1) or the GTEx dataset
(1000 Genomes dataset 2) [18]. Both datasets comprise genome-wide genotypes of individ-
uals with European ancestry only (including Finnish). Dataset 1 comprises 78,089,780 SNPs
mapped onto the human genome assembly GRCh37/hg19 of 503 individuals. Dataset
2 comprises 73,159,508 SNPs mapped onto the human genome assembly GRCh38/hg38 of
522 individuals.

2.2. Gene Overlap between Datasets

In this study we analyzed only genes that were labeled as protein coding, long
non-coding RNA, or pseudogenes in GENCODE (v26, https://www.gencodegenes.org/
human/release_26.html (accessed on 1 September 2020) and only if expression levels were
available simultaneously in the BrainEAC, GTEx, and CMC datasets. Gene transcript IDs
from BrainEAC and GTEx or CMC gene ensemble IDs were aligned using BioMart [19]

http://www.braineac.org/
https://www.gencodegenes.org/human/release_26.html
https://www.gencodegenes.org/human/release_26.html
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by the following criteria: (1) the transcript ID and the gene ensemble ID should be from
the same strand (i.e., positive or negative); and (2) when more than one transcript ID in
the BrainEAC database correspond to the same gene ensemble ID in the GTEx or CMC
database, the transcript ID with the largest overlap (in nucleotide base pairs) with the gene
ensemble ID is chosen. Gene expression models were trained and validated internally and
externally for 8604 genes with expression levels available in the BrainEAC, GTEx, and
CMC databases (Figure 1A).

2.3. eQTL Model Training

An eQTL model for each gene was trained using each combination of the eGenScore
and PrediXcan frameworks with the BrainEAC and GTEx datasets. The main differences
between the eGenScore and the PrediXcan methods are represented in Figure 2. The first
step, common to both frameworks, was to select SNPs located 1 million base pairs upstream
and downstream of the gene location in the genome. The following steps are described
separately for each framework below.
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eGenScore. The association between the SNPs and the gene expression level was
tested using linear regression and an additive allele coding (i.e., 0, 1, or 2 tested alleles) for
each SNPi individually (Equation 1) and each genej as implemented in Matrix eQTL [20].

expressiongenej = βi × SNPi (1)

SNPs nominally associated (p < 0.05) with gene expression were clumped using LD
information from the 1000 Genomes dataset. In detail, the SNPs were first ordered by
statistical significance (i.e., from the lowest to the highest p-value). Secondly, for every
possible unique pair of SNPs, the LD was measured using the 1000 Genomes dataset.
Thirdly, for each pair of SNPs in high LD (i.e., r2 > 0.3), the SNP with the lowest significance
(i.e., the highest p-value) was excluded. Fourthly, the third step was iterated across all pairs
of SNPs in high LD. Each SNP was weighted by the contribution of one tested allele of the
SNP to the gene expression level (i.e., the β coefficients from the linear regression described
above). The eQTL score, which represents the predicted gene expression, was computed
for each genej as the weighted sum of each SNPi’s tested alleles adjusted to the expected
proportion of those alleles in a standardized population (i.e., the 1000 Genomes dataset)
(Equations (2) and (3)). For each SNPi, this adjustment centers the expected contribution of
the SNPi to the eQTL scoregenej at zero. If the genotype of SNPi is missing in an individual
(CalledSNPi = 0), the contribution of SNPi to eQTL scoregenej is also set to zero. In this way,
the contribution of a missing SNP to the eQTL score is equal to its expected contribution in
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the standardized population [21]. Furthermore, some examples of eQTL score computation
are provided in Supplementary Material, Tables S1 and S2.

eQTL scoregenej = ∑
i
((βi × SNPi − adjustment f actori)× CalledSNPi) (2)

where CalledSNPi =

{
1, if the genotype of SNPi is present
0, if the genotype of SNPi is missing

.

adjustment f actori = βi × Proportion1 re f allele; i + 2 × βi × Proportion2 re f allele; i (3)

PrediXcan. The PrediXcan framework combines all the SNP selection, SNP LD ex-
clusion, and gene expression prediction steps as described in the eGenScore section into
one single step by using regularized linear regression methods [12]. In detail, gene ex-
pression is predicted by applying an elastic net regression to the original set of SNPs
within the gene region (i.e., 1 million base pairs up- and downstream). Elastic net uses L1
and L2 penalties from least absolute shrinkage and selection operator (LASSO) and ridge
regression, respectively, which allows the selection of a set of uncorrelated (i.e., sparse)
SNPs [16]. Furthermore, the elastic net regression analysis was conducted using the R
package glmnet [22] with α = 0.5. Herein, we used the gene expression models that were
trained with the GTEx dataset and that are publicly available at PredictDB Data Repository
(http://predictdb.org/ (accessed on 1 September 2020)). Additionally, we trained the gene
expression models using the BrainEAC dataset, using the same specifications as those used
with the GTEx database [12].

2.4. Internal Validation

The eQTL models were internally validated using a 5-fold cross-validation approach.
In each iteration, the following measures were computed for each gene using the hold-out
fold: (1) the Pearson correlation coefficient (r) between the observed gene expression and
the eQTL score; and (2) the p-value corresponding to the null hypothesis of no correlation
between the observed gene expression and the eQTL score. Then, as an overall performance
measure of the gene expression model, the Pearson correlation coefficient was averaged
across the 5 folds (ravg) and squared (ravg

2). Furthermore, the ravg
2 is herein interpreted as

the variance in the observed gene expression levels that can be explained by the eQTL score
(i.e., the predicted gene expression levels). The global p-value was computed using Fisher’s
method [23], which was previously used by the authors of PrediXcan [12]. Furthermore,
the models were considered significant if the averaged correlation between the observed
gene expression and the eQTL score was statistically significant (i.e., Fisher’s p-value < 0.05)
and of at least small size (i.e., |ravg| > 0.1). These performance measures were extracted
for all models trained with eGenScore and the BrainEAC or GTEx dataset and PrediXcan
and the BrainEAC dataset. They were already available for models trained with PrediXcan
and GTEx (at the PredictDB Data Repository).

2.5. External Validation

The eQTL models which were shown to be significant at the internal validation were
externally validated using the CMC dataset. The external validation performance was
assessed by computing the Pearson correlation coefficient (r) between the observed gene
expression and the eQTL score in the CMC dataset and considered statistically significant
if the p-value corresponding to the null hypothesis of no correlation between the observed
gene expression and the eQTL score was below 0.05. We additionally calculated the squared
Pearson correlation coefficient (r2). These performance measures were extracted for all
models trained with eGenScore or PrediXcan and the BrainEAC or GTEx dataset and
PrediXcan and the BrainEAC dataset.

http://predictdb.org/
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2.6. Performance Comparison between eQTL Models

The squared averaged Pearson correlation coefficient (i.e., ravg
2) and the squared Pear-

son correlation coefficient (i.e., r2) of the internal and external validations, respectively,
were compared across training datasets (BrainEAC vs. GTEx) and across frameworks
(i.e., eGenScore vs. PrediXcan) for the genes whose models were significant in the tested
combinations (i.e., BrainEAC vs. GTEx or eGenScore vs. PrediXcan) using a two-tailed
paired t-test. Cohen’s d was computed as the effect size of the difference, and its interpreta-
tion was performed using Kristoffer Magnusson’s web tool (Interpreting Cohen’s d effect
size, https://rpsychologist.com/d3/cohend/ (accessed on 5 April 2021)).

3. Results
3.1. eQTL Models Significant in Each Method

The proportion of eQTL models (i.e., of genes) shown to be statistically significant
(i.e., |ravg| > 0.1 and Fisher’s p-value < 0.05) was highest when they were trained with
the PrediXcan framework and the GTEx database (23.5%; 2023 out of 8604 genes) and, in
descending order, was followed by models trained with (1) eGenScore and GTEx (7.3%;
626 out of 8604 genes); (2) eGenScore and BrainEAC (6.9%; 594 out of 8604 genes); and
(3) PrediXcan and BrainEAC (0.8%; 66 out of 8604) (Figure 3).
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eGenScore (orange); (b) GTEx and eGenScore (green); (c) BrainEAC and PrediXcan (blue); or (d) GTEx and PrediXcan
(yellow) was found to be statistically significant during the internal validation (i.e., |ravg| > 0.1 and Fisher’s p-value < 0.05).

3.2. eQTL Model’s Internal Validation

When comparing the internal validation performance of the gene expression models
across databases, the squared averaged Pearson correlation coefficient between the ob-
served gene expression and the eQTL score was statistically different between BrainEAC
and GTEx using both frameworks (eGenScore, p = 0.003, or PrediXcan, p = 0.001) (Table 1
and Figure 4). Furthermore, the performance was shown to be higher for BrainEAC when
using eGenScore and for GTEx when using PrediXcan. When comparing the eQTL models’
performance across frameworks, models trained with PrediXcan showed better perfor-
mance than the ones trained with eGenScore (p < 0.001) but only when using the GTEx
database (Table 1 and Figure 4).

https://rpsychologist.com/d3/cohend/
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Table 1. Comparison of the gene expression models’ internal validation performance (i.e., the squared
averaged Pearson correlation coefficient between the predicted and observed gene expressions) across
datasets (i.e., BrainEAC vs. GTEx) and across frameworks (i.e., eGenScore vs. PrediXcan).

Comparison df, t p Cohen’s d

eGenScore framework (BrainEAC vs. GTEx) 61, 3.10 0.003 ** 0.39

PrediXcan framework (BrainEAC vs. GTEx) 30, −3.63 0.001 *** 0.65

BrainEAC dataset (eGenScore vs. PrediXcan) 20, −1.79 0.088 0.39

GTEx dataset (eGenScore vs. PrediXcan) 227, −13.86 <0.001 *** 0.92
Only genes with a significant model (i.e., with an absolute averaged Pearson correlation coefficient between
the predicted and observed gene expressions above 0.1 and a Fisher’s p-value below 0.05) were considered for
this comparison. A two-sided paired-sample t-test was conducted and considered statistically significant at a
p-value < 0.05. df: degrees of freedom (i.e., number of genes for which there was a significant model minus one).
**: p < 0.01; ***: p < 0.001; t: t-statistic.

3.3. eQTL Model’s External Validation

Across databases, the external validation performance of the eQTL models (i.e., when
applied to the CMC database) was shown to be higher when trained with the BrainEAC
than with the GTEx database but only when using the eGenScore framework (p = 0.015)
(Table 2). No statistically significant difference in the external validation performance of the
eQTL models was found when models were trained with the BrainEAC or GTEx database
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and PrediXcan framework (Table 2). Across frameworks, the performance of the gene
expression models was shown to be higher for PrediXcan compared to eGenScore when
using BrainEAC (p = 0.018) or GTEx (p < 0.001) datasets (Table 2).

Table 2. Comparison of the gene expression models’ external validation performance (i.e., the
squared Pearson correlation coefficient between the predicted and observed gene expressions in
the CMC dataset) across datasets (i.e., BrainEAC vs. GTEx) and across frameworks (i.e., eGenScore
vs. PrediXcan).

Comparison df, t p Cohen’s d

eGenScore framework (BrainEAC vs. GTEx) 33, 2.57 0.015 * 0.44

PrediXcan framework (BrainEAC vs. GTEx) 15, −2.04 0.060 0.51

BrainEAC dataset (eGenScore vs. PrediXcan) 8, −2.95 0.018 * 0.98

GTEx dataset (eGenScore vs. PrediXcan) 115, −15.76 <0.001 *** 1.46
Only genes with a statistically significant Pearson correlation coefficient between the predicted and observed
gene expressions in the CMC dataset (p-value < 0.05) were considered for this comparison. A two-sided paired-
sample t-test was conducted and considered statistically significant at a p-value < 0.05. df: degrees of freedom
(i.e., number of genes for which there was a model whose predicted expression correlated significantly with the
observed expression of that gene minus one). *: p < 0.05; ***: p < 0.001; t: t-statistic.

4. Discussion

We herein presented eGenScore, a polygenic score-based method to predict gene
expression levels from genotypes. In a previous paper, the elastic net-based framework
PrediXcan was shown to outperform a polygenic score-based method [12]. However,
that polygenic score-based method was methodologically limited; in comparison to it,
eGenScore better handles the following two issues: (1) the LD between SNPs shown to be
individually associated with gene expression; and (2) missing genotypes. We compared
the performance of frontal cortex-specific gene expression models trained with different
frameworks, eGenScore vs. PrediXcan, as well as with different datasets, BrainEAC vs.
GTEx, after both internal and external validation steps.

Overall, our results confirm that elastic net-based methods are superior to polygenic
score-based methods for the prediction of gene expression based on eQTL genotypes.
PrediXcan predicted gene expression levels with a higher performance than eGenScore
regardless of the database (i.e., BrainEAC or GTEx) used for model training. Indeed, the
observed difference in the internal validation performance between frameworks when
using the GTEx database corresponded to a large effect size, with roughly 82% of the gene
expression models showing higher performance when trained with PrediXcan than with
eGenScore (i.e., 186 out of 228 genes; Cohen’s d = 0.92). This effect was enlarged when the
gene expression models were applied to an external database (i.e., CMC), with 93% of the
gene expression models showing a higher correlation between the observed and predicted
gene expressions in the CMC database when trained with PrediXcan than with eGenScore
(i.e., 108 out of 116 genes; Cohen’s d = 1.46). However, the frameworks differed in their best
training dataset; models trained with BrainEAC outperformed those trained with GTEx
when the eGenScore framework was used, whereas the opposite was observed when the
PrediXcan framework was used. The effect of the training database on performance was
shown to be higher for the PrediXcan framework, with 74% of the gene expression models
showing higher internal performance when trained with GTEx (i.e., 22 out of 31 genes;
Cohen’s d = 0.65). This higher dependence on the training dataset may compromise an
assumption of generalizability of PrediXcan across training sets.

Given that PrediXcan was shown to be a better framework for predicting gene expres-
sion levels than eGenScore, our results suggest that GTEx should be used as the training
database for these gene expression models. When compared with BrainEAC, GTEx is a
more comprehensive transcriptomic and genomic database with a slightly larger sample
size for brain gene expression and uses whole-genome sequence data and gene expression
data (compared to gene expression array data employed in BrainEAC). This different source
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of gene expression data may explain the lack of concordance between eQTL models derived
using the same framework in different datasets and the poorer performance of PrediXcan
in BrainEAC compared to GTEx. The challenges of obtaining gene expression data in
brain tissues may necessitate a variety of approaches to measuring brain gene expression.
As such, a valuable direction for future research may be to improve the generalizability
of elastic net-based frameworks such as PrediXcan to work effectively across different
sources of gene expression data. Indeed, this may be a particularly important step towards
a universal, non-invasive, statistical estimator of tissue-specific gene expression, a very
important tool for an effective translation of TWAS into clinical practice [7].

5. Limitations

Our study had several limitations that need to be addressed. Firstly, the gene expres-
sion data of the BrainEAC and GTEx databases were annotated to different human genome
assemblies, which hindered the exact correspondence between the transcriptomic data of
the two databases and, therefore, narrowed the number of possible genes that we could
analyze. Secondly, although we restricted the comparisons of the performance of gene
expression models to genes expressed in the frontal cortex, in fact, the brain samples from
which the transcriptomic data were extracted across databases were not exactly from the
same brain location. It is reasonable to expect that the expression level of a given gene
might slightly vary depending on which exact location in the brain it is taken from. There-
fore, the comparison of model performance across datasets might be influenced by this
factor. Thirdly, both eGenScore and PrediXcan methods rely on genotype–gene expression
association data (such as are provided in the BrainEAC and GTEx databases) and, therefore,
are only valid for the age interval of the sample used in these databases. They cannot
account for the epigenetic effects on gene expression across the lifespan.

6. Conclusions

In this study, we compared the performance of eQTL models trained with: (1) differ-
ent frameworks—eGenScore, a novel (introduced for the first time herein) and improved
polygenic method that, compared with the original polygenic method presented along
with PrediXcan, addresses high LD between SNPs and handles individual missing geno-
types; and PrediXcan, a previously published and regularized linear regression method
(i.e., elastic net)—; and (2) different training datasets—BrainEAC and GTEx. Taken together,
our results show that: (1) PrediXcan outperforms eGenScore regardless of the training
database that is used (i.e., BrainEAC or GTEx); and (2) GTEx yields eQTL models with a
higher performance than BrainEAC when using PrediXcan. Therefore, we encourage the
use of models trained with the GTEx database and using the PrediXcan framework when
predicting gene expression from genotype data.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/genes12101531/s1, Table S1: β values, adjustment factor, and coding alleles for the list of SNPs
to be included in the eQTL score model for the neuregulin 4 gene (NRG4); Table S2: Examples of how
the eQTL score is computed. In detail, eQTL score was computed for four hypothetical individuals.

Author Contributions: V.T. was involved in the study design, analysis, results interpretation, and
writing of the manuscript. J.M. contributed to data analysis. E.V., J.C. and D.P. were involved in the
study design and critically revised the manuscript. All authors have read and agreed to the published
version of the manuscript.

Funding: For this work, V.T. received support from a Fundação para a Ciência e a Tecnologia (FCT)
PhD fellowship (PD/BD/114460/2016) and DSAIPA/DS/0065/2018 grant. D.P. received support
from FCT grants FCT-IF/00787/2014, LISBOA-01–0145-FEDER-030907, and DSAIPA/DS/0065/2018;
a European Commission Marie Curie Career Integration Grant (FP7-PEOPLE-2013-CIG 631952); a
Breakthrough Idea Grant from the Director’s Fund of iMM Lisboa (2016); and a Bial Foundation
Psychophysiology Grant (Ref. 292/16).

Institutional Review Board Statement: Not applicable.

https://www.mdpi.com/article/10.3390/genes12101531/s1
https://www.mdpi.com/article/10.3390/genes12101531/s1


Genes 2021, 12, 1531 11 of 12

Informed Consent Statement: Not applicable.

Data Availability Statement: Data is available upon request to the authors.

Acknowledgments: We thank the United Kingdom Brain Expression Consortium (UKBEC) investi-
gators for BrainEAC access, whose work was supported by the MRC through the MRC Sudden Death
Brain Bank (G0901254), a Training Fellowship (G0802462), and by the King Faisal Specialist Hospital
and Research Centre, Saudi Arabia. We also thank the investigators of the Genotype-Tissue Expres-
sion (GTEx) Project, which was supported by the Common Fund of the Office of the Director of the Na-
tional Institutes of Health (NIH) and by NCI, NHGRI, NHLBI, NIDA, NIMH, and NINDS. Finally, we
thank the CommonMind Consortium, supported by funding from Takeda Pharmaceuticals Company
Limited, F. Hoffmann-La Roche Ltd, and NIH grants R01MH085542, R01MH093725, P50MH066392,
P50MH080405, R01MH097276, RO1-MH-075916, P50M096891, P50MH084053S1, R37MH057881,
AG02219, AG05138, MH06692, R01MH110921, R01MH109677, R01MH109897, U01MH103392, and
contract HHSN271201300031C through IRP NIMH. Brain tissue for the study was obtained from the
following brain bank collections: the Mount Sinai NIH Brain and Tissue Repository, the University
of Pennsylvania Alzheimer’s Disease Core Center, the University of Pittsburgh NeuroBioBank and
Brain and Tissue Repositories, and the NIMH Human Brain Collection Core. CMC Leadership: Panos
Roussos, Joseph Buxbaum, Andrew Chess, Schahram Akbarian, Vahram Haroutunian (Icahn School
of Medicine at Mount Sinai), Bernie Devlin, David Lewis (University of Pittsburgh), Raquel Gur,
Chang-Gyu Hahn (University of Pennsylvania), Enrico Domenici (University of Trento), Mette A.
Peters, Solveig Sieberts (Sage Bionetworks), Thomas Lehner, Stefano Marenco, and Barbara K. Lipska
(NIMH). This paper represents independent research partly funded by the National Institute for
Health Research (NIHR) Maudsley Biomedical Research Centre in South London, the Maudsley NHS
Foundation Trust, and King’s College, London. The views expressed are those of the author(s) and
not necessarily those of the NHS, the NIHR, or the Department of Health and Social Care.

Conflicts of Interest: D.P. is a co-founder and shareholder of the neuroimaging research services
company NeuroPsyAI, Ltd. J.C. is an editorial board member for Genes. All authors declare that
they have no conflict of interest.

References
1. Trifu, S.; Kohn, B.; Vlasie, A.; Patrichi, B.-E. Genetics of schizophrenia (Review). Exp. Ther. Med. 2020, 59–70. [CrossRef]
2. Lappalainen, T.; Sammeth, M.; Friedländer, M.R.; ’T Hoen, P.A.C.; Monlong, J.; Rivas, M.A.; Gonzàlez-Porta, M.; Kurbatova, N.;

Griebel, T.; Ferreira, P.G.; et al. Transcriptome and genome sequencing uncovers functional variation in humans. Nature 2013, 501,
506–511. [CrossRef]

3. Hindorff, L.A.; Sethupathy, P.; Junkins, H.A.; Ramos, E.M.; Mehta, J.P.; Collins, F.S.; Manolio, T.A. Potential etiologic and
functional implications of genome-wide association loci for human diseases and traits. Proc. Natl. Acad. Sci. USA 2009, 106,
9362–9367. [CrossRef]

4. Watanabe, K.; Stringer, S.; Frei, O.; Mirkov, M.U.; de Leeuw, C.; Polderman, T.J.C.; van der Sluis, S.; Andreassen, O.A.; Neale,
B.M.; Posthuma, D. A global overview of pleiotropy and genetic architecture in complex traits. Nat. Genet. 2019, 51, 1339–1348.
[CrossRef]

5. Aguet, F.; Brown, A.A.; Castel, S.E.; Davis, J.R.; He, Y.; Jo, B.; Mohammadi, P.; Park, Y.S.; Parsana, P.; Segrè, A.V.; et al. Genetic
effects on gene expression across human tissues. Nature 2017, 550, 204–213. [CrossRef]

6. Cummings, B.B.; Marshall, J.L.; Tukiainen, T.; Lek, M.; Donkervoort, S.; Foley, A.R.; Bolduc, V.; Waddell, L.B.; Sandaradura, S.A.;
O’Grady, G.L.; et al. Improving genetic diagnosis in Mendelian disease with transcriptome sequencing. Sci. Transl. Med. 2017,
9, eaal5209. [CrossRef]

7. Marco-Puche, G.; Lois, S.; Benítez, J.; Trivino, J.C. RNA-Seq Perspectives to Improve Clinical Diagnosis. Front. Genet. 2019, 10,
1152. [CrossRef]

8. Lonsdale, J.; Thomas, J.; Salvatore, M.; Phillips, R.; Lo, E.; Shad, S.; Hasz, R.; Walters, G.; Garcia, F.; Young, N.; et al. The
Genotype-Tissue Expression (GTEx) project. Nat. Genet. 2013, 45, 580–585. [CrossRef] [PubMed]

9. Ramasamy, A.; Trabzuni, D.; Guelfi, S.; Varghese, V.; Smith, C.; Walker, R.; De, T.; Coin, L.; De Silva, R.; Cookson, M.R. Genetic
variability in the regulation of gene expression in ten regions of the human brain. Nat. Neurosci. 2014, 17, 1418–1428. [CrossRef]
[PubMed]

10. Hoffman, G.E.; Bendl, J.; Voloudakis, G.; Montgomery, K.S.; Sloofman, L.; Wang, Y.C.; Shah, H.R.; Hauberg, M.E.; Johnson,
J.S.; Girdhar, K.; et al. CommonMind Consortium provides transcriptomic and epigenomic data for Schizophrenia and Bipolar
Disorder. Sci. Data 2019, 6, 180. [CrossRef] [PubMed]

11. Barbeira, A.N.; Dickinson, S.P.; Bonazzola, R.; Zheng, J.; Wheeler, H.E.; Torres, J.M.; Torstenson, E.S.; Shah, K.P.; Garcia, T.;
Edwards, T.L.; et al. Exploring the phenotypic consequences of tissue specific gene expression variation inferred from GWAS
summary statistics. Nat. Commun. 2018, 9, 1–20. [CrossRef] [PubMed]

http://doi.org/10.3892/etm.2020.8973
http://doi.org/10.1038/nature12531
http://doi.org/10.1073/pnas.0903103106
http://doi.org/10.1038/s41588-019-0481-0
http://doi.org/10.1038/nature24277
http://doi.org/10.1126/scitranslmed.aal5209
http://doi.org/10.3389/fgene.2019.01152
http://doi.org/10.1038/ng.2653
http://www.ncbi.nlm.nih.gov/pubmed/23715323
http://doi.org/10.1038/nn.3801
http://www.ncbi.nlm.nih.gov/pubmed/25174004
http://doi.org/10.1038/s41597-019-0183-6
http://www.ncbi.nlm.nih.gov/pubmed/31551426
http://doi.org/10.1038/s41467-018-03621-1
http://www.ncbi.nlm.nih.gov/pubmed/29739930


Genes 2021, 12, 1531 12 of 12

12. Gamazon, E.R.; Wheeler, H.E.; Shah, K.P.; Mozaffari, S.V.; Aquino-Michaels, K.; Carroll, R.J.; Eyler, A.E.; Denny, J.C.; Nicolae, D.L.;
Cox, N.J.; et al. A gene-based association method for mapping traits using reference transcriptome data. Nat. Genet. 2015, 47,
1091–1098. [CrossRef] [PubMed]

13. Huckins, L.M.; Dobbyn, A.; Ruderfer, D.M.; Hoffman, G.; Wang, W.; Pardiñas, A.F.; Rajagopal, V.M.; Als, T.D.; TNguyen, H.;
Girdhar, K.; et al. Gene expression imputation across multiple brain regions provides insights into schizophrenia risk. Nat. Genet.
2019, 51, 659–674. [CrossRef] [PubMed]

14. Wang, J.; Gamazon, E.R.; Pierce, B.L.; Stranger, B.E.; Im, H.K.; Gibbons, R.D.; Cox, N.J.; Nicolae, D.L.; Chen, L.S. Imputing Gene
Expression in Uncollected Tissues Within and beyond GTEx. Am. J. Hum. Genet. 2016, 98, 697–708. [CrossRef] [PubMed]

15. Wray, N.R.; Lee, S.H.; Mehta, D.; Vinkhuyzen AA, E.; Dudbridge, F.; Middeldorp, C.M. Research Review: Polygenic methods and
their application to psychiatric traits. J. Child Psychol. Psychiatry 2014, 55, 1068–1087. [CrossRef]

16. Zou, H.; Hastie, T. Regularization and variable selection via the elastic net. J. R. Stat. Soc. Ser. B (Stat. Methodol.) 2005, 67, 301–320.
[CrossRef]

17. Aguet, F.; Barbeira, A.N.; Bonazzola, R.; Jo, B.; Kasela, S.; Liang, Y.; Parsana, P.; Aguet, F.; Battle, A.; Brown, A.; et al. The GTEx
Consortium atlas of genetic regulatory effects across human tissues. Science 2020, 369, 1318–1330. [CrossRef]

18. Auton, A.; Abecasis, G.R.; Altshuler, D.M.; Durbin, R.M.; Bentley, D.R.; Chakravarti, A.; Clark, A.G.; Donnelly, P.; Eichler, E.E.;
Flicek, P.; et al. A global reference for human genetic variation. Nature 2015, 526, 68–74. [CrossRef]

19. Durinck, S.; Moreau, Y.; Kasprzyk, A.; Davis, S.; De Moor, B.; Brazma, A.; Huber, W. BioMart and Bioconductor: A powerful link
between biological databases and microarray data analysis. Bioinformatics 2005, 21, 3439–3440. [CrossRef]

20. Shabalin, A.A. Matrix eQTL: Ultra fast eQTL analysis via large matrix operations. Bioinformatics 2012, 28, 1353–1358. [CrossRef]
21. Vassos, E.; Sham, P.; Kempton, M.; Trotta, A.; Stilo, S.A.; Gayer-Anderson, C.; Di Forti, M.; Lewis, C.M.; Murray, R.M.; Morgan, C.

The Maudsley environmental risk score for psychosis. Psychol. Med. 2020, 50, 2213–2220. [CrossRef]
22. Friedman, J.H.; Hastie, T.; Tibshirani, R. Regularization Paths for Generalized Linear Models via Coordinate Descent. J. Stat.

Softw. 2010, 33, 1–22. [CrossRef] [PubMed]
23. Fisher, R.A. Statistical Methods for Research Workers. In Breakthroughs in Statistics; Springer Series in Statistics (Perspectives in,

Statistics); Kotz, S., Johnson, N.L., Eds.; Springer: New York, NY, USA, 1992; pp. 66–70. [CrossRef]

http://doi.org/10.1038/ng.3367
http://www.ncbi.nlm.nih.gov/pubmed/26258848
http://doi.org/10.1038/s41588-019-0364-4
http://www.ncbi.nlm.nih.gov/pubmed/30911161
http://doi.org/10.1016/j.ajhg.2016.02.020
http://www.ncbi.nlm.nih.gov/pubmed/27040689
http://doi.org/10.1111/jcpp.12295
http://doi.org/10.1111/j.1467-9868.2005.00503.x
http://doi.org/10.1126/science.aaz1776
http://doi.org/10.1038/nature15393
http://doi.org/10.1093/bioinformatics/bti525
http://doi.org/10.1093/bioinformatics/bts163
http://doi.org/10.1017/S0033291719002319
http://doi.org/10.18637/jss.v033.i01
http://www.ncbi.nlm.nih.gov/pubmed/20808728
http://doi.org/10.1007/978-1-4612-4380-9_6

	Introduction 
	Materials and Methods 
	Genomic and Transcriptomic Datasets 
	Gene Overlap between Datasets 
	eQTL Model Training 
	Internal Validation 
	External Validation 
	Performance Comparison between eQTL Models 

	Results 
	eQTL Models Significant in Each Method 
	eQTL Model’s Internal Validation 
	eQTL Model’s External Validation 

	Discussion 
	Limitations 
	Conclusions 
	References

