Please use this identifier to cite or link to this item:
http://hdl.handle.net/10071/22382
Author(s): | Carvalho, L. Diogo, C. Mendes, S. |
Date: | 2021 |
Title: | Quaternionic numerical range of complex matrices |
Volume: | 620 |
Pages: | 168 - 181 |
ISSN: | 0024-3795 |
DOI (Digital Object Identifier): | 10.1016/j.laa.2021.02.030 |
Keywords: | Quaternions Numerical range Complex matrices Numerical radius |
Abstract: | This paper explores further the computation of the quaternionic numerical range of a complex matrix. We prove a modified version of a conjecture by So and Thompson. Specifically, we show that the shape of the quaternionic numerical range for a complex matrix depends on the complex numerical range and two real values. We establish under which conditions the bild of a complex matrix coincides with its complex numerical range and when the quaternionic numerical range is convex. |
Peerreviewed: | yes |
Access type: | Open Access |
Appears in Collections: | BRU-RI - Artigos em revistas científicas internacionais com arbitragem científica |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
QNR_of_ complex_matrices_revision.pdf | Versão Aceite | 407,65 kB | Adobe PDF | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.