Please use this identifier to cite or link to this item: http://hdl.handle.net/10071/22382
Author(s): Carvalho, L.
Diogo, C.
Mendes, S.
Date: 2021
Title: Quaternionic numerical range of complex matrices
Volume: 620
Pages: 168 - 181
ISSN: 0024-3795
DOI (Digital Object Identifier): 10.1016/j.laa.2021.02.030
Keywords: Quaternions
Numerical range
Complex matrices
Numerical radius
Abstract: This paper explores further the computation of the quaternionic numerical range of a complex matrix. We prove a modified version of a conjecture by So and Thompson. Specifically, we show that the shape of the quaternionic numerical range for a complex matrix depends on the complex numerical range and two real values. We establish under which conditions the bild of a complex matrix coincides with its complex numerical range and when the quaternionic numerical range is convex.
Peerreviewed: yes
Access type: Open Access
Appears in Collections:BRU-RI - Artigos em revistas científicas internacionais com arbitragem científica

Files in This Item:
File Description SizeFormat 
QNR_of_ complex_matrices_revision.pdfVersão Aceite407,65 kBAdobe PDFView/Open


FacebookTwitterDeliciousLinkedInDiggGoogle BookmarksMySpaceOrkut
Formato BibTex mendeley Endnote Logotipo do DeGóis Logotipo do Orcid 

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.