Utilize este identificador para referenciar este registo: http://hdl.handle.net/10071/22120
Registo completo
Campo DCValorIdioma
dc.contributor.authorAlbuquerque, V.-
dc.contributor.authorDias, J.-
dc.contributor.authorBacao, F.-
dc.date.accessioned2021-02-22T15:55:08Z-
dc.date.available2021-02-22T15:55:08Z-
dc.date.issued2021-
dc.identifier.issn2220-9964-
dc.identifier.urihttp://hdl.handle.net/10071/22120-
dc.description.abstractCities are moving towards new mobility strategies to tackle smart cities’ challenges such as carbon emission reduction, urban transport multimodality and mitigation of pandemic hazards, emphasising on the implementation of shared modes, such as bike-sharing systems. This paper poses a research question and introduces a corresponding systematic literature review, focusing on machine learning techniques’ contributions applied to bike-sharing systems to improve cities’ mobility. The preferred reporting items for systematic reviews and meta-analyses (PRISMA) method was adopted to identify specific factors that influence bike-sharing systems, resulting in an analysis of 35 papers published between 2015 and 2019, creating an outline for future research. By means of systematic literature review and bibliometric analysis, machine learning algorithms were identified in two groups: classification and prediction.eng
dc.language.isoeng-
dc.publisherMDPI-
dc.relationUIDB/04466/2020-
dc.rightsopenAccess-
dc.subjectBike-sharing systemseng
dc.subjectMachine learningeng
dc.subjectClassificationeng
dc.subjectPredictioneng
dc.subjectPRISMA methodeng
dc.titleMachine learning approaches to bike-sharing systems: A systematic literature revieweng
dc.typearticle-
dc.peerreviewedyes-
dc.journalISPRS International Journal of Geo-Information-
dc.volume10-
dc.number2-
degois.publication.issue2-
degois.publication.titleMachine learning approaches to bike-sharing systems: A systematic literature revieweng
dc.date.updated2021-02-22T15:53:39Z-
dc.description.versioninfo:eu-repo/semantics/publishedVersion-
dc.identifier.doi10.3390/ijgi10020062-
iscte.identifier.cienciahttps://ciencia.iscte-iul.pt/id/ci-pub-79630-
Aparece nas coleções:ISTAR-RI - Artigos em revistas científicas internacionais com arbitragem científica

Ficheiros deste registo:
Ficheiro Descrição TamanhoFormato 
ijgi-10-00062 (1).pdfVersão Editora4,28 MBAdobe PDFVer/Abrir


FacebookTwitterDeliciousLinkedInDiggGoogle BookmarksMySpaceOrkut
Formato BibTex mendeley Endnote Logotipo do DeGóis Logotipo do Orcid 

Todos os registos no repositório estão protegidos por leis de copyright, com todos os direitos reservados.