Utilize este identificador para referenciar este registo: http://hdl.handle.net/10071/21516
Autoria: Coelho, J. A.
Glória, A.
Sebastião, P.
Data: 2020
Título próprio: Precise water leak detection using machine learning and real-time sensor data
Volume: 1
Número: 2
Paginação: 474 - 493
ISSN: 2624-831X
DOI (Digital Object Identifier): 10.3390/iot1020026
Palavras-chave: Internet of things
Green tech
Machine learning
Sustainability
Water leaks
Efficiency
Water management
Resumo: Water is a crucial natural resource, and it is widely mishandled, with an estimated one third of world water utilities having loss of water of around 40% due to leakage. This paper presents a proposal for a system based on a wireless sensor network designed to monitor water distribution systems, such as irrigation systems, which, with the help of an autonomous learning algorithm, allows for precise location of water leaks. The complete system architecture is detailed, including hardware, communication, and data analysis. A study to discover the best machine learning algorithm between random forest, decision trees, neural networks, and Support Vector Machine (SVM) to fit leak detection is presented, including the methodology, training, and validation as well as the obtained results. Finally, the developed system is validated in a real-case implementation that shows that it is able to detect leaks with a 75% accuracy.
Arbitragem científica: yes
Acesso: Acesso Aberto
Aparece nas coleções:IT-RI - Artigos em revistas científicas internacionais com arbitragem científica

Ficheiros deste registo:
Ficheiro Descrição TamanhoFormato 
IoT-01-00026.pdfVersão Editora5,72 MBAdobe PDFVer/Abrir


FacebookTwitterDeliciousLinkedInDiggGoogle BookmarksMySpaceOrkut
Formato BibTex mendeley Endnote Logotipo do DeGóis Logotipo do Orcid 

Todos os registos no repositório estão protegidos por leis de copyright, com todos os direitos reservados.